Appendix C.4 Johnson & Ettinger Model - Data Entry Screen Inhalation of Volatiles from Groundwater Current Adult Residential Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Aberjona Auto Parts | ENTER | Enter X in appro | Vadose zone | ENTER
Target | ENTER
Target hazard | ENTER
Averaging | ENTER
Averaging | ENTER | ENTER | ENTER | ENTER | |------------------|--------------------------|-----------------------------|-----------------------|---------------------------------|-----------------------|--------------------------|--------------------|---------------------|---------------|------------------| | Chemical CAS No. | | soll water-filled porosity, | risk for carcinogens, | quotient for
noncarcinogens, | time for carcinogens, | time for noncarcinogens, | Exposure duration, | Exposure frequency, | Exposure time | Coversion factor | | (numbers only, | | θ,,,∨ | TR | THQ | AT _C | AT _{NC} | ED | EF | ET | CF | | no dashes) | Chemical | (cm³/cm³) | (unitless) | (unitless) | (yrs) | (yrs) | (yrs) | (days/yr) | (hrs/day) | (hrs/yr) | | | | | | | | | | | | | | 75354 | 1,1-Dichloroethylene | 0.3 | 1.0E-06 | 1 | 70 | 7 | 7 | 350 | 16 | 8760 | | 106467 | 1,4-Dichlorobenzene | 0.3 | 1.0E-08 | 1 | 70 | 7 | 7 | 350 | 16 | 8760 | | 71432 | Benzene | 0.3 | 1.0E-06 | 1 | 70 | 7 | 7 | 350 | 16 | 8760 | | 67663 | Chloroform | 0.3 | 1.0E-06 | 1 | 70 | 7 | 7 | 350 | 16 | 8760 | | 156592 | cis-1,2-Dichloroethylene | 0.3 | 1.0E-06 | 1 | 70 | 7 | 7 | 350 | 16 | 8760 | | 127184 | Tetrachloroethylene | 0.3 | 1.0E-06 | 1 | 70 | 7 | 7 | 350 | 16 | 8760 | | 79016 | Trichloroethylene | 0.3 | 1.0E-06 | 1 | 70 | 7 | 7 | 350 | 16 | 8760 | | 75014 | Vinyl chloride | 0.3 | 1.0E-06 | 1 | 70 | 7 | 7 | 350 | 16 | 8760 | | 91203 | Naphthalene | 0.3 | 1.0E-06 | 1 | 70 | 7 | 7 | 350 | 16 | 8760 | | 85018 | Phenanthrene | 0.3 | 1.0E-06 | 11 | 70 | 7 | 7 | 350 | 16 | 8760 | i soil dry bulk density (ρ_b). (Appendix C.4 Johnson & Ettinger Model - Chemical Properties Screen Inhalation of Volatiles from Groundwater Current Adult Residential Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Aberjona Auto Parts | Chemical
CAS No. | Chemical | Diffusivity
in air,
D _a
(cm ² /s) | Diffusivity
in water,
D _w
(cm ² /s) | Henry's
law constant
at reference
temperature,
H
(atm-m ³ /mol) | Henry's law constant reference temperature, T _R (°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal
boiling
point,
T _B
(°K) | Critical
temperature,
T _C
(°K) | Organic
carbon
partition
coefficient,
K _{oc}
(cm ³ /g) | Pure
component
water
solubility,
S
(mg/L) | Unit
risk
factor,
URF
(µg/m³) ⁻¹ | Reference
conc.,
RfC
(mg/m³) | |---------------------|--------------------------|--|--|---|---|--|---|--|---|--|---|---------------------------------------| | 75354 | 1.1 Diablesseth Jaco | 0.005.00 | 4045.05 | 0.00 | , | | | | | | | | | | 1,1-Dichloroethylene | 9.00E-02 | 1.04E-05 | 2.61E-02 | 25 | 6,247 | 304.75 | 576.05 | 5.89E+01 | 2.25E+03 | N/A | 2.0E-01 | | 106467 | 1,4-Dichlorobenzene | 6.90E-02 | 7.90E-06 | 2.43E-03 | 25 | 9,271 | 447.21 | 684,75 | 6.17E+02 | 7.38E+01 | N/A | 8.0E-01 | | 71432 | Benzene | 8.80E-02 | 9.80E-06 | 5.56E-03 | 25 | 7,342 | 353.24 | 562.16 | 5.89E+01 | 1.75E+03 | 7.8E-06 | 3.0E-02 | | 67663 | Chloroform | 1.04E-01 | 1.00E-05 | 3.66E-03 | 25 | 6,988 | 334.32 | 536.40 | 3.98E+01 | 7.92E+03 | 2.3E-05 | 5.0E-02 | | 156592 | cls-1,2-Dichloroethylene | 7.36E-02 | 1.13E-05 | 4.07E-03 | 25 | 7,192 | 333.65 | 544.00 | 3.55E+01 | 3.50E+03 | N/A | 2.0E-01 | | 127184 | Tetrachloroethylene | 7.20E-02 | 8.20E-06 | 1.84E-02 | 25 | 8,288 | 394.40 | 620.20 | 1.55E+02 | 2.00E+02 | 5.9E-06 | N/A | | 79016 | Trichloroethylene | 7.90E-02 | 9.10E-06 | 1.03E-02 | 25 | 7,505 | 360.36 | 544.20 | 1.66E+02 | 1.10E+03 | 1.1E-04 | 4.0E-02 | | 75014 | Vinyl chloride | 1.06E-01 | 1.23E-05 | 2.71E-02 | 25 | 5,250 | 259.25 | 432.00 | 1.86E+01 | 2.76E+03 | 8.8E-06 | 1.0E-01 | | 91203 | Naphthalene | 5.90E-02 | 7.50E-06 | 4.83E-04 | 25 | 10,373 | 491.14 | 748.40 | 2.00E+03 | 3.10E+01 | N/A | 3,0E-03 | | 85018 | Phenanthrene | 3.30E-02 | 7.47E-06 | 1.30E-04 | 25 | 1,057 | 613.00 | 869.01 | 1.41E+04 | 1.28E+00 | N/A | 3.0E-03 | Appendix C.4 Johnson & Ettinger Model - Calculations Screen Inhalation of Volatiles from Groundwater Current Adult Residential Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Aberjona Auto Parts | | | Source-
building
separation, | Vadose
zone soil
air-filled
porosity, | Vadose zone
effective
total fluid
saturation, | Vadose zone
soil
intrinsic
permeability, | Vadose zone
soil
relative air
permeability, | Vadose zone
soil
effective vapor
permeability, | Thickness of
capillary
zone, | Total
porosity in
capillary
zone, | Air-filled
porosity in
capillary
zone, | Water-filled porosity in capillary zone, | Floor-
wall
seam
perimeter, | Bidg.
ventilation
rate, | |--------|--------------------------|------------------------------------|--|--|---|--|---|------------------------------------|--|---|--|--------------------------------------|---------------------------------| | | | L ₇
(cm) | θ _a V
(cm³/cm³) | S _{te}
(cm³/cm³) | k,
(cm²) | k _{re}
(cm²) | k,
(cm²) | L _{ot} | n _{ez}
(cm³/cm³) | θ _{ειτε}
(cm³/cm³) | θ _{₩.σz}
(cm³/cm³) | Xorack
(cm) | Q _{bulkāna}
(cm³/ş) | | 75354 | 1,1-Dichloroethylene | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | | 106467 | 1,4-Dichlorobenzene | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0,390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | | | 71432 | Benzene | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0,303 | 4.00E+03 | | | 67683 | Chloraform | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 2.54E+04 | | 156592 | cis-1,2-Dichloroethylene | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | | | 127184 | Tetrachloroethylene | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | | | 79016 | Trichloroethylene | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | | | 75014 | Vinyl chloride | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | | | 91203 | Naphthalene | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | | | 85018 | Phenanthrene | 30.48 | 0.130 | 0.650 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 2.54E+04 | - (Appendix C.4 Johnson & Ettinger Model - Calculations Screen Inhalation of Volatiles from Groundwater Current Adult Residential Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Aberiona Auto Parts | | | Area of
encksed
space
below
grade,
A _e
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack
depth
below
grade,
Z _{crack}
(cm) | Enthalpy of vaporization at ave. groundwater temperature, | Henry's law
constant at
ave. groundwater
temperature,
H _{TS}
(atm-m³/mol) | Henry's law
constant at
ve. groundwat
temperature,
H' _{TS}
(unitless) | Vapor
viscosity at
ave. soil
temperature,
its
(g/cm-s) | Vadose zone
effective
diffusion
coefficient,
D ^{eff} v
(cm²/s) | Capillary
zone
effective
diffusion
coefficient,
D ^{eff} cz
(cm ² /s) | Total overail effective diffusion coefficient, Deff (cm²/s) | Diffusion path length, L (cm) | Convection path length, Lo | Source
vapor
conc.,
C _{source}
(μg/m³) | |--------|--------------------------|--|---|---|---|---|---|---|--|--|---|-------------------------------|----------------------------|---| | 75354 | 1,1-Dichlorosthylene | 1.80E+06 |
2,22E-04 | 60.40 | 1 | | | | | | | | 1,5,1) | | | 106467 | 1,4-Dichlorobenzene | 1.80E+06 | 2.22E-04 | 52.12 | 6,392 | 1.47E-02 | 6.34E-01 | 1.75E-04 | 5.47E-04 | 5.12E-04 | 5.25E-04 | 30.48 | 52.12 | 7.42E+01 | | 71432 | Велгеле | 1.80E+06 | | 52.12 | 11,243 | 8.89E-04 | 3.83E-02 | 1.75E-04 | 4.38E-04 | 4.12E-04 | 4.22E-04 | 30.48 | 52.12 | 1.64E+01 | | 07663 | Chloroform | | 2.22E-04 | 52.12 | 8,122 | 2,69E-03 | 1.16E-01 | 1.75E-04 | 5.42E-04 | 5.07E-04 | 5.20E-04 | 30.48 | 52.12 | 8.68E+00 | | 156592 | cis-1,2-Dichloroethylene | 1.80E+06 | 2.22E-04 | 52.12 | 7,554 | 1.86E-03 | 8.02E-02 | 1.75E-04 | 6.43⊑-04 | 6.02E-04 | 6.17E-04 | 30.48 | 52.12 | 11114 | | 127184 | | 1.80E+06 | 2.22E-04 | 52.12 | 7,734 | 2.04E-03 | 8.77E-02 | 1.75E-04 | 4.59E-04 | 4.30E-04 | 4.41E-04 | 30.48 | 52.12 | 7.02E+02 | | 79016 | Tetrachloroethylene | 1,80E+06 | 2.22E-04 | 52.12 | 9,553 | 7.83E-03 | 3.37E-01 | 1.75E-04 | 4.39E-04 | 4.11E-04 | 4.21E-04 | 30.48 | 52.12 | 1.41E+02 | | | Trichloroethylene | 1.80E+06 | 2.22E-04 | 52.12 | 8,657 | 4.79E-03 | 2.06E-01 | 1.75E-04 | 4.83E-04 | 4.52E-04 | 4.64E-04 | 30.48 | 52.12 | 4.43E+03 | | 75014 | Vinyl chloride | 1.80E+06 | 2.22E-04 | 52.12 | 5,000 | 1.73E-02 | 7.46E-01 | 1.75E-04 | 6.44E-04 | 6.02E-04 | 6.18E-04 | 30.48 | | | | 91203 | Naphthalene | 1.80E+06 | 2.22E-04 | 52.12 | 12.913 | 1.52E-04 | 6.55E-03 | 1.75E-04 | 4.70E-04 | 4.50E-04 | 4.57E-04 | | 52.12 | 1.47E+02 | | 85018 | Phenanthrene | 1.80E+06 | 2.22E-04 | 52.12 | 1,479 | 1.14E-04 | 4.90E-03 | 1.75E-04 | 3.50E-04 | 3,41E-04 | 3.44E-04 | 30.48 | 52.12
52.12 | 8.86E+00
1.03E+01 | . Appendix C.4 Johnson & Ettinger Model - Calculations Screen Inhalation of Volatiles from Groundwater Current Adult Residential Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Aberjona Auto Parts | Autorijona Au | | Crack
radius,
r _{orack}
(cm) | Average vapor flow rate into bidg., Q _{rol} (cm ³ /s) | Crack effective diffusion coefficient, D ^{creck} (cm ² /s) | Area of
crack,
A _{crack}
(cm ²) | Exponent of equivalent foundation Peclet number, exp(Pe ⁴) (unitless) | Infinite source indoor attenuation coefficient, α (unitless) | infinite
source
blog.
conc.,
C _{building}
(µg/m³) | Unit
risk
factor,
URF
(µg/m³) ^{*†} | Reference
conc.,
RfC
(mg/m³) | |---------------|--------------------------|--|--|--|---|---|--|---|---|---------------------------------------| | 76354 | 1,1-Dichloroethylene | 0,10 | 5,22E+00 | 5,47E-04 | 4.00E+02 | 3.87E+155 | 1.76E-04 | 1.31E-02 | N/A | 2.0E-01 | | 106467 | 1,4-Dichlorobenzene | 0.10 | 5.22E+00 | 4.38E-04 | 4.00E+02 | 1.36E+194 | 1.70E-04 | 2.79E-03 | N/A | B,0E-01 | | 71432 | Benzene | 0.10 | 5.22E+00 | 5,42E-04 | 4.00E+02 | 1.40E+157 | 1.76E-04 | 1.53E-03 | 7.8E-06 | 3.0E-02 | | 67663 | Chloroform | 0,10 | 5.22E+00 | 6.43E-04 | 4.00E+02 | 2.93E+132 | 1.80E-04 | N/A | 2.3E-05 | 5.0E-02 | | 156592 | cis-1,2-Dichloroethylene | 0.10 | 5.22E+00 | 4.59E-04 | 4.00E+02 | 3.62E+185 | 1.71E-04 | 1.20E-01 | N/A | 2.0E-01 | | 127184 | Tetrachloroethylene | 0.10 | 5.22E+00 | 4.39E-04 | 4.00E+02 | 9,93E+193 | 1.70E-04 | 2.39E-02 | 5.9E-06 | N/A | | 79016 | Trichloroethylene | 0.10 | 5.22E+00 | 4.83E-04 | 4.00E+02 | 1.52E+176 | 1.73E-04 | 7.66E-01 | 1.1E-04 | 4.0E-02 | | 75014 | Vinyl chloride | 0.10 | 5.22E+00 | 6.44E-04 | 4.00E+02 | 1.44E+132 | 1.80E-04 | 2.64E-02 | 8.8E-06 | 1.0E-01 | | 91203 | Naphthalene | 0.10 | 5.22E+00 | 4,70E-04 | 4.00E+02 | 1.34E+181 | 1.72E-04 | 1.53E-03 | N/A | 3.0E-03 | | 85018 | Phenanthrene | 0.10 | 5.22E+00 | 3.50E-04 | 4.00E+02 | 3.05E+243 | 1.64E-04 | 1.68E-03 | N/A | 3.0E-03 | Appendix C.4 Johnson & Ettinger Model - Results Inhalation of Volatiles from Groundwater Current Adult Residential Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Aberjona Auto Parts # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: Risk-based indoor exposure groundwater conc., Pure component water solubility, S Final indoor exposure groundwater conc., Indoor exposure groundwater conc., noncarcinogen Indoor exposure groundwater conc., carcinogen # INCREMENTAL RISK CALCULATIONS: | 75354 | 1,1-Dichloroethylene | |--------|--------------------------| | 106467 | 1,4-Dichlorobenzene | | 71432 | Benzene | | 67663 | Chloroform | | 156592 | cis-1,2-Dichloroethylene | | 127184 | Tetrachloroethylene | | 79016 | Trichloroethylene | | 75014 | Vinyl chloride | | 91203 | Naphthalene | | 85018 | Phenanthrene | | (μg/L) | (µg/L) | (μ g/L) | (μg/L) | (μg/L) | |--------|--------|-----------------|----------|--------| | NA | NA | NA NA | 2.25E+06 | NA | | NA | NA | NA | 7.38E+04 | NA | | NA | NA | NA | 1.75E+06 | NA | | NA | NA | NA | 7.92E+06 | NA | | NA | NA | NA | 3.50E+06 | NA | | NA | NA | NA | 2.00E+05 | NA | | NA NA | NA | NA | 1.10E+06 | NA | | NA | NA | NA | 2.76E+06 | NA | | NA. | NA | NA NA | 3.10E+04 | NA | | NA | NA | NA | 1.28E+03 | NA | | Incremental | Hazard | |--------------|---------------| | risk from | quotient | | vapor | from vapor | | intrusion to | intrusion to | | Indoor air, | indoor air, | | carcinogen | noncarcinogen | | (unitless) | (unitless) | | | | | NA | 4.2E-05 | | NA | 2.2E-06 | | | | | 7.6E-10 | 3.2E-05 | | Ų | |----| |)6 | |)5 | | | |)4 | | | | 12 | |)4 | |)4 | | 14 | |), | 95% UCL Cancer 95% UCL Risk Н TOTAL: 5E-06 1E-02 = Cancer risk > 1E-05 or HQ/HI>1E+00 CALCULATE RISK-BASED SOIL CONCENTRATION (with "X" or "YES" bod SL-SCREEN Vereion 2.3; 03/01 YES OR CALCULATE INCREMENTAL PURISH FROM ACTUAL SOLL CONDENTRATION (main "X" in "YES" for and initial all conc. below | | Erver initial action | | ENTER
Death | EHTER | ENTER | ENTER | | ENTER | | | | | | | | | | | | | |---------------------------|--|------------------------------|---|------------------------------|----------------|----------------------------------|---------------|--|---------------------------------|----------------------------------|--|-------------------------------------|--------------------------------|------------------------------|-----------------|------------------|-----------------|--------------------|-----------------|--------------------------------------| | ENTER
Chamical | | ENTER
Mean
Acid | below crace
to bottom
of environm | Create below
arede to top | Awrage | Vactore zone
508
soil type | | User-defined
yedges zone
epi vezyr | ENTER
Vactore zone
system | ENTER
Vadosa tong
editolal | ENTER
Various cons
activator-Med | ENTER
Vedose zone
aol crosnic | ENTER
Averaging
time for | ENTER
Awasana
Ikre for | ENTER
Expose | EHTER
Excepte | ENTER
Excava | ENTER
Coversion | ENTER
Teroel | ENTER
Tecor heart
publical for | | CAS No.
(numbers only. | | cenc | Miner Boor, | र्थ प्रशासक्तकां स्था | lemperature. | (Limed to manme) | a CR | DATTMALINY. | bulk denety. | COTOON, | perceity. | centran fraction. | carcinogens, | noncercinophis. | duration. | frequency, | lime . | fector | carcinogens. | vorcercinopen | | no destres | Chamical | (MD14) | Le | u | Υ ₂ | sof veper | | . *, | Α, | n ^r | a.v | II.V | ATC | ATNC | ED | EF | ĘT | CF | गर | THO | | 10.00 | | (40,14) | (*8 or 200 cm) | (cnv) | (0) | (ppmraghirly) | Note | (cm²) | (g/cm²) | (unit retat) | (cm³/cm³) | (uniform) | (100) | (MO) | (Arte) | (days-yr) | (hm/qe/) | (h/s/n) | (uralless) | (प्रामीपदा) | | 10000 | Trimedy/berzene, 1,2,4- | | 15 | 15 | 10 | LS | 1 1 1 | | 15 | 0.43 | 0.3 | 0.002 | 70) | 76 | 25 | 280 | - 8 | 6760 | 1.0E-06 | 1 1 | | 140000 | Olchkroetrylene, 1,2- (total) | <u> </u> | 16 | 15 | 10 | LS T | | | 1.5 | 0.45 | 0.3 | 0.002 | 70 | 25 | 25 | 250 | | 8760 | 1.0E-08 | 1 1 | | 100073. | Trimethylbenzene, 1,3,5- | | 15 | 16 | 10 | LS . | | | 1,5 | 0.43 | 0.3 | 0.002 | 70 | 25 | 25 | 260 | | 8760 | 1,0E-06 | 1 1 | | 91300 | n-Butythenzene
Nashihalene | 2.74E+03 | 16 | 16 | 10 | LS | 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 25 | 25 | 250 | | 8760 | 1,06-36,1 | 1 | | 90679 | leopropylokiene, 4- | 4.746.40.1 | 15 | 15 | 10 | LS
LS | 1 | | 1.5 | 0.43 | 0.5 | 0.002 | 70 | 25 | 25 | 250 | | 8760 | 1.0E-08 | 11_ | | 136664 | But/Dertzerle, eac- | + | 15 | 15 | 10 | L6 | + | | 1.5 | 0 43 | 0.3 | 0.002 | 70 | 25 | 25 | 500 | | 8760 | 1.05-06 | 1 1 | | 74673 | Chiprometrane | 2.49€+02 | 18 | 16 | 10 | LB | +++ | | 1.5 | 0.43 | 03 | 0.002 | 70 | 25
25 | 25
25 | 250
250 | 8 | 8760 | 1.0E-05 | 1 1 | | 79014 | Vinyl chloride | 2.81E+02 | 15 | 15 | 10 | 13 | 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 25 | 25 | 260 | - | 8760
8760 | 1.0E-06 | | | 74630 | Bromornethane | | 18 | 18 | 10 | Lis - | 1 7 1 | | 1.5 | 0.43 | 0.3 | 0.003 | 70 | 25 | 25 | 260 | | 8760 | 1.0E-06 | + | | 79002 | Ethyl Chloride | 8.80E+01 | 15 | 15 | 10 | ls. | | | 1,6 | 0.43 | 0.3 | 0.002 | TQ | 25 | 75 | 250 | 8 | 8760 | 1.0E-06 | + | | 7ESH
NICH | 1,1-Dichloroethylene | 1 20E+02 | 15 | 16 | 10 | Us | Γ | | 1.5 | 0 43 | 0.3 | 0.002 | 70 | 25 | 25 | 250 | | 8760 | 1.0E-06 | 1 1 | | RFS-1 | Vzichlom-1.2.2-milliournethene 1.1.2-
Acetone | 3 24E+02 | 15 | 15 | 10 | 15 | | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 2.5 | 25 | 250 | 8 | 1760 | 1,0E-Qd | 1 | | 79:00 | Carbon Disulfice | 32-01 | 15 | 18 | 10 | 1.5 | ++ | | 1.5 | 0.43 | D.3 | 0.002 | 70 | 25 | 25 | 260 | 8 | 8760 |
1.5E-06 | 1 | | 7996 | Methyl Acetale | · · · · · · · · | 15 | 18 | 10 | 1.0 | + ; 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 7g
70 | 25 | 25 | 250 | 8 | 8760 | 1.0E-06 | 1 | | 79060 | Methylene chloride | 7.27E+02 | 15 | 18 | 10 | | 1-1-1 | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 25 | 25 | 250
250 | - ð | 8760 | 1.0E-08 | - | | 190000 | trans-1,2-Dichloroethylene | 7.73E+01 | 16 | 18 | 10 | 18 | 1 | | 1,5 | 0.43 | 0.3 | 0.002 | 70 | 25 | 25 | 280 | | 8760 | 1.0E-06 | | | 1954000 | Methyl-Tertiary-Butyl Ether | 5.75E+01 | 16 | 15 | 10 | La . | 1 | | 1.5 | 0.43 | 0.3 | 5.002 | 70 | 25 | 26 | 250 | - 6 | 8760
8760 | 1.06-08 | + :- | | MD43 | 1,1-Dichloroethane | 3.56E+02 | 15 | 15 | 10 | LS . | $\overline{}$ | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 25 | 26 | 280 | | 8760 | 1.06-04 | + | | 194002 | cls-1,2-Dichloroethylene | 1.80E+02 | 15 | 15 | 10 | LB | 171 | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 25 | 26 | 250 | | 8760 | 1.0E-04 | + | | Person | Butanone, 2- (MEK) | | 16 | 18 | 10 | US. | | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 25 | 25 | 250 | - 5 | 8760 | 1.0€-01 | + - | | THESE | 1,1,1-7richloroethane | <u> </u> | 16 | 15 | 10 | LS | 1 | | 1.6 | 0.43 | 6.5 | 0.005 | 70 | 25 | 25 | 250 | | 8760 | 106-06 | 1 1 | | 196827 | Cyclohecurse | 2106402 | 15 | 15 | 10 | LS. | | | 1.5 | 0.43 | 0.3 | 0 002 | 70 | 25 | 25 | 500 | 8 | areq | 1.0E-08 | 7-7- | | FHERE
TROME | Banzeryo
Trichiorosifryisma | 2015-02 | 15 | 15 | 10 | LS. | 1. | | 1.6 | 0.43 | 0.3 | 0 002 | 70 | 25 | 28 | 250 | 8 | arred | 1.06-08 | | | 144473 | Methyl cycloheane | 4,45E+02 | 15 | 15 | 10 | US | | | 1.5 | 0.43 | | 0 002 | 70 | 25 | 25 | 250 | 8 | a760 | 10€-08 | 11 | | (SAND | Toluene | 5.65E 402 | 16 | 15 | 10 | La | ++ | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 25 | 25 | 250 | | 8760 | 1.0E-08 | 11111 | | 127144 | Tetrachicrostrylana | 1.476+02 | 16 | 15 | 10 | <u> </u> | ┞╬┪ | | 1.5 | 0.43 | 0.3 | 6 002 | 70 | 25
25 | 25 | 250 | 8 | 8760 | 1.06.01 | | | 100007 | Chlorobenzene | 3.11E+02 | 16 | 15 | 10 | <u>Câ</u> | - | | 1.8 | 0.43 | 0.3 | 0.002 | 70 | 25 | 25
25 | 250
250 | 8 | 8783 | 1.0E-08 | | | 100414 | Ethythenzene | 1.846+02 | 15 | 15 | 10 | L8 | 1 | | 1.5 | 0.43 | 63 | 0.002 | 70 | 26 | - 25 | 250 | | areo | 1.0E-08 | 1 | | 1330907 | Xylenee | | 15 | 15 | 10 | LE | 1 | | 16 | 0.43 | 93 | 0.002 | 70 | 25 | 25 | 250 | - 5 | 8760 | 1.0€-06 | + | | 109425 | Styrene | | 15 | 16 | 10 | LS | 1 | | 1.8 | 0.43 | 0.3 | 0.002 | 70 | 75 | 75 | 250 | 8 | 8760 | 1.06-06 | + | | 1429 | teopropylbenzene | | 15 | 15 | 10 | LÉ. | 1 | | 1.5 | 0.43 | 0.3 | 0.000 | 70 | 25 | 25 | 250 | | 9760 | 1.0E-08 | + ; | | 78144 | 1,1,2,2-Tetrachkoosthane | | 15 | 15 | 10 | (8 | | | 1.5 | 0.43 | 03 | 0.000 | 70 | 25 | 25 | 250 | - 4 | 8760 | 1.0€-06 | 1 | | 541731 | Dichlorobenzene, 1.3-
1.4-Dichlorobenzene | 1.00E+02
2.50E+02 | 15 | 15 | 10 | LS | | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 25 | 25 | 280 | . 8 | 8760 | 1.0E-00 | 1 | | 100-107 | 1,3-Dichlorobergane | 5.10E+01 | 16 | 15 | 10 | LS | 1-1-1 | | 1.6 | 0.43 | 0.9 | 9.903 | 70 | 78 | 25 | 250 | | 8760 | 1.06-01 | 1 | | 120021 | 1,2,4-Trichlorobengene | 5.1.2.151 | | 15 | 19 | LS | | | 1.5 | 0.43 | 93 | 0.000 | 70 | 25 | 26 | 250 | • | 878C | 1.0E-08 | | | 777827 | Benzeldehvide | 1 | 15 | 16 | 10 | LA | 1-1 | | 1.5 | 0.43 | 03 | 0.002 | 70 | 26 | 26 | 260 | | 8780 | 1.0E-06 | | | 81676 | Methylnaphthalana, 2- | 6 41E+G3 | 19 | 15 | 10 | 18 | +++ | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 25
28 | 25 | 260
250 | A | 8760 | 1.06-06 | + | | EES (| Biphanyi, 1,1'- | | 15 | 16 | 10 | - ŭ | 1 | - | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 25 | 26 | 250 | * | 8760 | 1.0E-06 | - | | | Acemphtylene | 4 00€+02 | 18 | 13 | 10 | LB: | 1 | | 1.5 | 0.43 | 0.3 | 9,002 | 70 | 25 | 28 | 250 | | 9760
9760 | 1.06-08 | + | | 4773A | Aceniphthene | | . 15 | 16 | 10 | LS | 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 25 | 25 | 250 | 8 | 8780 | 1.0E-06 | + | | 1350 | Dibenzofuren | 1.79E+03 | 75 | 15 | 10 | LE | | | 1.5 | 0.43 | 0.3 | 0.002 | סל | 25 | 26 | 250 | | 8780 | 1.06-08 | + - | | MOTO | Plucrene | 1 | 18 | 18 | 10 | i.s. | 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 25 | 25 | 250 | 8 | 8760 | 1 08-08 | + | | 00 054 | Phenanthrene | 3.652+04 | 18 | 15 | 10 | l8 | | | 1.5 | 0.43 | 0.5 | 0.007 | 70 | 25 | 25 | 250 | | 8760 | 1.06-08 | 1 | | 'काळ' | Anthrecane | 9.83E+04 | 15 | 16 | 10 | L8 | | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 25 | 25 | 250 | 8 | 8780 | 1.0E-0d | 1 | | G-GI | C5-C8 Alighatics
C8-C12 Allohatics | 9.83E+04
8.71E+04 | 15 | 15 | 10 | L\$ | | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 76 | 26 | 250 | 8 | 8760 | 1.06-06 | 1 | | CH-CM
CH-CM | C9-C12 Alignatics | 4.31E+06 | 15 | 15 | 10 | LØ . | | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 28 | 25 | 250 | | 8760 | 106-04 | 1 | | CHC16 | C9-C18 Allohatice | 5.04E+06 | 15 | 18 | 10 | Tg. | | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 25 | 215 | 250 | 8 | 8780 | 1.06-06 | 1 | | C11428 | C11-C22 Aromatica | 4.10£+08 | 15 | 15 | 10 | L8 | | | 1.5 | 0.43 | 0.3 | 0.002 | 95 | 26 | 25 | 250 | | 8760 | 1.06-06 | 1 | | Vale: | OTTO A POST PORTION | | | 15 | | | | | 1.0 | 0.43 | 0.5 | 0.002 | 70 | 26 | 26 | 250 | • | 6760 | 1 0E-08 | | Appendix C.4 Johnson & Etlinger Model - Data Entry Screen Inhalation of Volatiles from Soil Future Commercial Scenario - RME Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Whitney Barrel | Chemical
CAS No.
(numbers only,
no dashes) (| Chemical | Diffusivity
in air,
D _a
(cm²/s) | Diffusivity
in water,
D _w
(cm²/s) | Henry's
law constant
at reference
temperature,
H
(atm-m³/mol) | Henry's
law constant
reference
temperature,
T _R
(°C) | Enthalpy of vaporization at the normal boiling point, ΔH_{Vb} (cal/mol) | Normal
boiling
point,
T _B
(°K) | Critical
temperature,
T _c
(°K) | Organic carbon partition coefficient, K_{∞} (cm ³ /g) | Pure
component
water
solubility,
S
(mg/L) | Unit
risk
factor,
URF
(μg/m³) ⁻¹ | Reference
cond.,
RfC
(mg/m³) | Physical
state at
soil
temperature,
(S.L.G) | |---|--|---|---|--|--|---|---|--|---|--|---|---------------------------------------|---| | 95636 | Trimethylbenzene, 1,2,4- | 7.80E-02 | 9.03E-06 | 5.70E-03 | 25 | 1.25E+03 | 442.30 | 649.11 | 3,72E+03 | 5.70E+01 | N/A | 6.0E-03 | L. | | 540590 | Dichloroethylene, 1,2- (total) | 5.59E-02 | 6.47E-06 | 4,30E-04 | 20 | 1,32E+03 | 585.00 | 877.50 | 1.28E+02 | 1.30E+00 | #N/A | #N/A | 0.0E+00 | | 108678 | Trimethylbenzene, 1,3,5- | 6.48E-02 | 7.86E-06 | 7.81E-03 | 25 | 1.25E+03 | 442.30 | 649.11 | 1,67E+03 | 2.00E+01 | N/A | 6.0E-03 | L | | 104518 | n-Butylbenzene | 7.25E-02 | 8.39E-06 | 1.25E-02 | 25 | 1.23E+03 | 456.00 | 684.00 | 2.51E+03 | 1.26E+00 | #N/A | #N/A | L | | 91203 | Naphthalene | 5.90E-02 | 7.50E-06 | 4.83E-04 | 25 | 1.04E+04 | 491.14 | 748,40 | 2.00E+03 | 3.10E+01 | N/A | 3.0E-03 | S | | 99876 | Isopropyltoluene, 4- | 7.25E-02 | 8.39E-06 | 8.60E+00 | 25 | 1.24E+03 | 450.10 | 652.04 | 1.58E+03 | 2.34E+01 | N/A | 4.0E-01 | L | | 135968 | Butylbenzene, sec- | 8.00E-02 | 8.00E-06 | 1.67E-02 | 25 | 1.24E+03 | 446.65 | 669.98 | 3,11E+04 | 1.76E+01 | #N/A | #N/A | 0.0E+00 | | 74873 | Chloromethane | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1.35E+03 | 249.00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 9.0E-02 | 0.0E+00 | | 75014 | Viriyl chloride | 1,06E-01 | 1.23E-05 | 2.71E-02 | 25 | 5,25E+03 | 259.25 | 432.00 | 1.86E+01 | 2.76E+03 | 8.8E-06 | 1.0E-01 | <u> </u> | | 74839 | Bromomethane | 7.28E-02 | 1.21E-05 | 6.22E-03 | 25 | 5,49E+03 | 276,50 | 414.75 | 1.43E+01 | 1.52E+04 | N/A | 5.0E-03 | 0.0E+00 | | 75003 | Ethyl Chloride | 1,26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1.36E+03 | 249.00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 1.0E+01 | <u> </u> | | 75354 | 1,1-Dichloroethylene | 9.00E-02 | 1.04E-05 | 2.61E-02 | 25 | 6.25E+03 | 304.75 | 576.05 | 5,89E+01 | 2.25E+03 | N/A | 2.0E-01 | L | | | Trichloro-1,2,2-triflouroethane,
1,1,2- | 2.88E-02 | 8.07E-06 | 5.17E-01 | 25 | 1.33E+03 | 320.70 | 481.05 | 2.25E+02 | 1.70E+02 | N/A | 3.0€+01 | 0,0E+00 | | 67641 | Acetone | 1.24E-01 | 1.14E-05 | 3.88E-05 | 25 | 6.96E+03 | 329.20 | 508.10 | 5,75E-01 | 1.00E+06 | N/A | N/A | <u> </u> | | 75150 | Carbon Disulfide | 1.04E-01 | 1.29E-05 | 1,27E-02 | 25 | 6,39E+03 | 319.00 | 552.00 | 5.14E+01 | 2.67E+03 | N/A | 7.0E-01 | L | | 79209 | Methyl Acetate | 1.04E-01 | 1.00E-05 | 1.13E-04 | 25 | 1,31E+03 | 365,00 | 547.50 | 3.32E+00 | 2.43E+05
1.30E+04 | #N/A
4.7E-07 | #N/A
3.0E+00 | 0.0E+00 | | 75092
156605 | Methylene chloride | 1.01E-01 | 1.17E-05 | 2.19E-03
9.39E-03 | 25 | 6.71E+03 | 313.00 | 510.00
516.50 | 1.17E+01
5.25E+01 | 6.30E+04 | 4.7E-07
N/A | 2.0E-01 | <u> </u> | | 1634044 | trans-1,2-Dichloroethylene | 7.07E-02
1.02E-01 | 1.19E-05
1.05E-05 | 9.39E-03
5.87E-04 | 25
25 | 1,33E+03
1,32E+03 | 328.36 | 497.11 | 3.84E+01 | 5.10E+04 | N/A | 3.0E+00 | | | 75343 | Methyl-Tertlary-Butyl Ether 1,1-Dichloroethane | 7.42E-02 | 1.05E-05 | 5.61E-03 | 25 | 6.90E+03 | 330.55 | 523.00 | 3.16E+01 | 5,06E+03 | N/A | 5.0E-01 | | | 156592 | cis-1,2-Dichloroethylene | 7.36E-02 | 1,13E-05 | 4,07E-03 | 25 | 7,19E+03 | 333.65 | 544.00 | 3.55E+01 |
3.50E+03 | N/A | 2.0E-01 | - | | 78933 | Butanone, 2- (MEK) | 8.08E-02 | 9.80E-06 | 5.60E-05 | 25 | 1.31E+03 | 352.50 | 528.75 | 3.83E+00 | 2.23E+05 | N/A | N/A | 0.0E+00 | | 71556 | 1,1,1-Trichloroethane | 7.80E-02 | 8.80E-06 | 1.72E-02 | 25 | 7.14E+03 | 347.24 | 545.00 | 1.10E+02 | 1.33E+03 | N/A | 2.2E+00 | L | | 110827 | Cyclohexane | 8.00E-02 | 9.00E-06 | 2.00E+00 | 25 | 1.31E+03 | 353.85 | 530.78 | 1,60€+02 | 5.50E+01 | #N/A | #N/A | 0.0E+00 | | 71432 | Benzene | 8.80E-02 | 9.80E-06 | 5.56E-03 | 25 | 7.34E+03 | 353.24 | 562.16 | 5.89E+01 | 1.75E+03 | 7.8E-06 | 3.0E-02 | | | 79016 | Trichloroethylene | 7.90E-02 | 9.10E-06 | 1.03E-02 | 25 | 7.51E+03 | 360.36 | 544.20 | 1,66E+02 | 1.10E+03 | 1.1E-04 | 4.0E-02 | L | | 108872 | Methyl cyclohexane | 9.86E-02 | 8.52E-06 | 4.23E-01 | 25 | 1.30E+03 | 373.90 | 560.85 | 2.68E+02 | 1,40E+01 | N/A | 3.0E+00 | Ļ | | 108883 | Toluene | 8.70E-02 | 8,60E-06 | 6.63E-03 | 25 | 7.93E+03 | 383.78 | 591.79 | 1.82E+02 | 5.26E+02 | N/A | 4.0E-01 | L. | | 127184 | Tetrachloroethylene | 7.20E-02 | 8.20E-06 | 1.84E-02 | 25 | 8.29E+03 | 394.40 | 620.20 | 1.55E+02 | 2.00E+02 | 5.9E-06 | N/A | L | | 108907 | Chlorobenzene | 7,30E-02 | 8.70E-06 | 3.71E-03 | 25 | 8.41E+03 | 404.B7 | 632.40 | 2.19E+02 | 4,72E+02 | N/A | 6.0E-02 | L | | 100414 | Ethylbenzene | 7.50E-02 | 7,80E-06 | 7.88E-03 | 25 | 8,50E+03 | 409,34 | 617.20 | 3.63E+02 | 1.69E+02 | N/A | 1.0E+00 | Ļ | | 1330207 | Xylenes | 7.69E-02 | 8.44E-06 | 6.73E-06 | 25 | 1.26E+03 | 417.40 | 616.21 | 2.41E+02 | 2.20E+02 | N/A | 1.0E-01 | L | | 100425 | Styrene | 7.10E-02 | B.00E-06 | 2,76E-03 | 25 | 8,74E+03 | 418,31 | 636.00 | 7.76E+02 | 3.10E+02 | #N/A | #N/A | | | 98828 | Isopropylbenzene | 6.50E-02 | 7.83E-06 | 1.47E-02 | 25 | 1,26E+03 | 425.40 | 631.01 | 9,31E+03 | 5.60E+01 | N/A | 4.0E-01 | | | 79345 | 1,1,2,2-Tetrachloroethane | 7.10E-02 | 7.90E-06 | 3.44E-04 | 25 | 9.00E+03 | 419.60 | 661.15 | 9.33E+01
1.70E+02 | 2,97E+03
6,88E+01 | #N/A | #N/A | | | 541731
106467 | Dichlorobenzene, 1,3-
1,4-Dichlorobenzene | 4,14E-02
6.90E-02 | 9.85E-06
7.90E-06 | 4.70E-03
2.43E-03 | 25
25 | 1.24E+03
9.27E+03 | 446.00
447.21 | 683.96
684.75 | 6.17E+02 | 7.38E+01 | N/A
N/A | N/A
8.0E-01 | S | | 95501 | 1,4-Dichlorobenzene | 6.88E-02 | 9.41E-06 | 1.62E-06 | 25
25 | 9.27E+03 | 465.00 | 697.50 | 5.34E+01 | 2.77E+04 | N/A | N/A | \$ | | 120821 | 1,2,4-Trichlorobenzene | 3.00E-02 | 8.23E-06 | 1.42E-03 | 25 | 1.05E+04 | 486.15 | 725.00 | 1.78E+03 | 3.00E+02 | N/A | 2.0E-01 | l i | | 100527 | Benzaldehyda | 7.30E-02 | 9.07E-06 | 2.62E-05 | 25 | 1,24E+03 | 452.00 | 678.00 | 3.27E+01 | 6.57E+03 | #N/A | #N/A | 0.0E+00 | | 91576 | Methylnaphthalene, 2- | 4.84E-02 | 7.75E-06 | 1.01E-03 | 25 | 1.17E+03 | 514.05 | 761.01 | 8.51E+03 | 2.46E+01 | N/A | 3.0E-03 | S | | 92524 | Biphenyl, 1,1'- | 4.04E-02 | 8.15E-06 | 3.03E-04 | 25 | 1.15E+03 | 529.10 | 793,65 | 6.25E+03 | 6.94E+00 | N/A | N/A | 0.0E+00 | | 208968 | Acenaphthylene | 4.43E-02 | 7.44E-06 | 2.80E-04 | 25 | 1.12E+03 | 553.00 | 792.01 | 4.79E+03 | 3.93E+00 | N/A | 3.0E-03 | S | | 83329 | Acenaphthene | 4.21E-02 | 7.69E-06 | 1.55E-04 | 25 | 1.22E+04 | 550.54 | 803.15 | 7.08E+03 | 4.24E+00 | N/A | 3.0E-03 | S | | 132649 | Dibenzofuran | 2.67E-02 | 5.93E-06 | 4.00E-03 | 25 | 1.11E+03 | 559.00 | B24.01 | 8.13E+03 | 1.00E+01 | N/A | N/A | S | | 86737 | Fluorene | 3.63E-02 | 7.88E-06 | 9.41E-08 | 25 | 1,27E+04 | 570.44 | 870.00 | 7.71E+03 | 1.90E+00 | N/A | 3.0E-03 | S | | 85018 | Phenanihrene | 3,30E-02 | 7.47E-06 | 1,30E-04 | 25 | 1.06E+03 | 613.00 | B69.01 | 1.41E+04 | 1.28E+00 | N/A | 3.0E-03 | S | | 120127 | Anthracene | 3.24E-02 | 7.74E-06 | 6,51E-05 | 25 | 1.31E+04 | 615.18 | 873.00 | 2.95E+04 | 4.34E-02 | N/A | 3.0E-03 | S | | C5-C8 | C5-C8 Aliphatics | 6.00E-02 | 1.00E-05 | 1.30E+00 | 25 | NA NA | NA | NA | 2.27E+03 | 1.10E+04 | N/A | 2.0E-01 | S | | C9-C12 | C9-C12 Aliphatics | 6.00E-02 | 1.00E-05 | 1,56E+00 | 25 | NA | NA | NA | 1.50E+05 | 7.00E+01 | N/A | 2.0E-01 | S | | | CO CAO Amerikan | 6.00E-02 | 1.00E-05 | 7.92E-03 | 25 | NA. | NA | NA | 1.78E+03 | 5.10E+04 | N/A | 5.0E-02 | S | | C9-C10
C9-C18 | C9-C10 Arometics
C9-C18 Aliphatics | 6.00E-02 | 1.00E-05 | 1,66E+00 | 25 | NA NA | NA. | NA. | 6.80E+05 | 1.00E+01 | N/A | 2.0E-01 | s | Appendix C, 4 Johnson & Ettinger Model - Data Entry Screen Inhatation of Voletiles from Soil Future Commercial Scenario - RME Southwest Prparies, Wells G&H Superfund Site, Operable Unit 2 Whitney Barrel | Chemical
CAS No. | | Source-
building
separation, | ecil
air-filled
parasity, | Vadose zone
effective
lotal fluid
issturation, | Vadose zone
soil
intrinsic
permeability, | Vedose zone
soli
relative sir
permeability, | Vadose zone
soil
effective vapor
permeability, | Floor-
wall
seem
perimeter, | Initial soil
concentration
used, | Bidg.
veniliation
rate, | Area of
anclosed
space
below
grade. | Crack-
to-lotal
area
ratio, | Crack
depth
below
grade. | Enthalpy of
raporization a
ave. soli
temperature. | constant at ave. soil | Henry's law
constant at
ave. soil
temperature. | Vapor
viacosity at
ava. soil
temperature, | Vadose
zone
effective
diffusion
coefficient, | |------------------------------|--|--|--|---|---|--|---|--------------------------------------|--|--|---|--------------------------------------|-----------------------------------|--|---------------------------------|---|--|--| | (numbers only,
no dashes) | Chemical | LT
(cm) | 6 _n ^V
(cm³/cm³) | S _m
(cm³/cm³) | k,
(cm²) | k _{ra}
(cm²) | k _e
(cm²) | Xorack
(cm) | CR
(µg/kg) | O _{bearing}
(e/ ^c mo) | A _{tt}
(cm²) | η
(unitless) | Z
(cm) | ΔΗ _{ν,τα}
(cal/mol) | H ₁₂
(atm-m³/mol) | HTS
(Unitless) | μτα
(g/cm-s) | D ^{ef} √
(cm²/s) | | | | | | | | | 1 | 100.11 | 4-131 | (= | (/ | (Brition 33) | Çariiy | (odkilibi) | , , , , , , | (01100-22) | /grin-2) | | | 95636 | Trimelhylbenzene, 1,2,4- | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 5.33E-09 | 1.72E+04 | 4.36E+05 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1.55E+03 | 4.98E-03 | 2.13E-01 | 1.75E-04 | 4.77E-04 | | 540590 | Dichloroethylene, 1,2- (total) | 1 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 1 72E+04 | 5.96E+0Z | 2.52E+06 | 9.50E+08 | 1.30E-04 | . 15 | 1.73E+03 | 3.87E-04 | 1.67E-02 | 1.75E-04 | 3.77E-04 | | 10567B | Trimelhylbenzene, 1,3,5- | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 7.13E+04 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1.55E+03 | 6.60E+03 | 2.93E-01 | 1.75E-04 | 3.96E-04 | | 104518 | n-Bulylbenzene | | 0.130 | 0.85B | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 6.63E+03 | 2.52E+08 | 9.50E+08 | 1,30E-04 | 15 | 1.53E+03 | 1.09E-02 | 4.69E-01 | 1.75E-04 | 4.41E-04 | | 91203 | Naphthalene | 1 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.74E+03 | 2.62E+06 | 9.60E+08 | 1.30E-04 | 15 | 1.28E+04 | 1.62E-04 | 6.55E-03 | 1.75E-04 | 4.70E-04 | | 135988 | Isopropyltoluene, 4-
Butylbenzene, sec- | 1 | 0.130
0.130 | 0.659
0.659 | 1,62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 7.31E+05 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1.57E+03 | | 3 22E+02 | 1.75E-04 | 4,39E-04 | | 74873 | Chloromethane | | 0.130 | 0.659 | 1.62E-08
1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.105+06 | 2,52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1.53E+03 | 1.46E-02 | 6.27E-01 | 1,75E-04 | 4.86E-04 | | 75014 | Vinyt chloride | | 0.130 | 0.659 | 1.62E-06 | 0.390 | 6.33E-09
6.33E-09 | 1.72E+04
1.72E+04 | 2.49E+02
2.61E+02 | 2.52E+08 | 9.50E+06
9.50E+06 | 1,30E-04 | 15 | 1 20E+03 | 7.70E-03 | 3.35E-01 | 1.75E-04 | 7.66E-04
6.44E-04 | | 74839 | Bromomethane | 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 3.69E+06 | 2.52E+06
2.52E+06 | 9.50E+06 | 1.30E-04
1.30E-04 | 15 | 5.00E+03
5.39E+03 | 1,73E-02
3,84E-03 | 7.48E-01
1.65E-01 | 1.75E-04
1.75E-04 | 4.48E-04 | | 75003 | Elhyl Chloride | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 8.60E+01 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.20E+03 | 7.78E-03 | 3.36E-01 | 1.75E-04 | 7.66E-04 | | 75354 | 1_1-Dichloroethylene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1,72E+04 | 1.20E+02 | 2.52E+06 | 9.60E+08 | 1.30E-04 | 15 | 8.39E+03 | 1.47E-02 | 6.34E-01 | 1.75E-04 | 5.47E-04 | | 76131 | Trichloro-1,2,2-triflouroethane, 1,1,2- | 1 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 3.99E+05 | 2.52E+06 | 9.60E+08 | 1.30E-04 | 15 | 1.44E+03 | 4.55E-01 | 1.96E+01 | 1,75E-04 | 1,75E-04 | | 67641 | Acetone | 1 | 0.130 | 0.659 | 1,62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 3.24E+02 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 7.56E+03 | 1.97E-05 | 8.50E-04 | 1.75E-04 | 2.07E-03 | | 75150 | Carbon Disulfide | 1 | 0.130 | 0.659 | 1.62E-D6 | 0.390 | 6.33E-09 | 1.72E+04 | 8.78E+05 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 5.68E+03 | 6.99E-03 | 3.01E-01 | 1,75E-04 | 6.34E-04 | | 79200 | Methyl Acetate | 1 | 0.130 | 0.659 | _1.62E-08 | 0.390 | 6.33E+09 | 1.72E+04 | 5.03E+07 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1 50E+03 | 9.88E-05 | 4.25E-03 | 1.75E-04 | 5.61E-04 | | 75092 | Methylene chloride | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 7.27E+02 | 2.52E+08
| 9.50E+06 | 1.30E-04 | 15 | 7.03E+03 | | 5.03E-02 | 1,75E-04 | 6.35E-04 | | 156605 | trans-1,2-Dichloroethylene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 7.73E+01 | 2.52E+03 | 9.50E+08 | 1.30E-04 | 15 | 1.42E+03 | 8.27E-03 | 3.56E-01 | 1.75E-04 | 4.32E-04 | | 1634044 | Melhyl-Yertiary-Butyl Ether | 1 | 0.130 | 0.659 | 1,62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.75E+01 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1.45E+03 | 5.166-04 | 2,22E-02 | 1.75E-04 | 6.87E-04 | | 75343
158582 | 1,1-Dichloroethane | 1 | 0.130 | 0,659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 3.56E+02 | 2.52E+08 | 0.50E+08 | 1.30E-04 | 15 | 7.45E+03 | | 1.24E-01 | 1.75E-04 | 4.58E-04 | | 78933 | cis-1,2-Dichloroethylene
Butanone, 2- (MEK) | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1 80E+0Z | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 7.73E+03 | 2.04E-03 | 8.77E-02 | 1,75E-04 | 4.59E-04 | | 71558 | 1,1,1-Trichloroethane | 1 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09
6.33E-09 | 1.72E+04
1.72E+04 | 4.63€+07 | 2.52E+06 | 8 50E+08 | 1,30E-04 | 15 | 1.49E+03 | 4.90E-05 | 2.11E-03 | 1.75E-04 | 9.45E-04 | | 110627 | Cyclohexane | 1 - | 0.130 | 0.659 | 1.52E-08 | 0,390 | 6.33E-09 | 1.72E+04 | 8.01E+05
3.88E+05 | 2.52E+06
2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 7.85E+03 | 8.50E-03 | 3.66E-01
7.54E+01 | 1.75E-04 | 4.75E-04 | | 71432 | Benzene | 1 | 0.130 | 0.659 | 1.625-08 | 0,390 | 6.33E-09 | 1.72E+04 | 2.10E+02 | 2.52E+08 | 9.50E+06 | 1,30E-04
1,30E-04 | 15 | 8 12E+03 | 1.75E+00
2.69E-03 | 1 18E-01 | 1.75E-04
1.75E-04 | 4.85E-04
5.42E-04 | | 79016 | Trichiproethylene | - i- | 0.130 | 0.659 | 1.625-08 | 0,390 | 6.33E-09 | 1.72E+04 | 2.91E+02 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 8.58E+03 | | 2 06E-01 | 1.75E-04 | 4.83E-04 | | 108872 | Methyl cyclohexane | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.45E+02 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1.516+03 | 3 70E-01 | 1.59E+01 | 1.75E-04 | 5.98E-04 | | 108883 | Toluene | i | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.85E+0Z | 2.52E+05 | 9.50E+06 | 1.30E-04 | 15 | 9.15E+03 | 2.92E-03 | 1.26E-01 | 1.75E-04 | 5.34E-04 | | 127184 | Tetrachioroethylene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1,47E+02 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 9.55E+03 | 7.83E-03 | 3.37E-01 | 1.75E-04 | 4.39E-04 | | 109907 | Chlorobenzene | 1 | 0.130 | 0.659 | 1.62E+08 | 0.390 | 6.33E-09 | 1.72E+04 | 3.11E+0Z | 2.52E+06 | 8.50E+08 | 1.30E-04 | 15 | 9.50E+03 | 1.54E-03 | 6.65E+02 | 1.75E-04 | 4.55E-04 | | 100414 | Elhylbenzene | 1 | 0.130 | 0.659 | 1.625-06 | 0.390 | 6.33E-09 | 1.72E+04 | 1.84E+02 | 2.52E+06 | 8 50E+06 | 1,30E-04 | 15 | 1.02E+04 | 3.18E-03 | 1.37E-01 | 1.75E-04 | 4.60E-04 | | 1330207 | Xyfenes | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.50E+05 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1.54E+03 | 5.86E-08 | 2.52E-04 | 1.75E-04 | 3.75E-03 | | 100425 | Styrene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.44E+05 | 2.52E+08 | 9 50E+06 | 1.30E-04 | 15 | 1.05E+04 | 1.06E-03 | 4 67E-02 | 1 75E-04 | 4.47E-04 | | 98828 | bopropybenzene | 1 | 0.130 | 0.659 | 1.625-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.06E+06 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.54E+03 | 1 28E-02 | 5 51E-01 | 1 75E-04 | 3 95E-04 | | 79345 | 1,1,2,2-Tetrachloroethane | 11 | 0.130 | 0.659 | 1.625-08 | 0.320 | 6,335-09 | 1.72E+04 | 1.15E+08 | 2.52E+08 | 9.50E+05 | 1,30E-04 | 15 | 1.05E+04 | 1.34E-04 | 5.77E-03 | 1.75E-04 | 5.65E-04 | | 541731 | Dichlorobenzene, 1,3- | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.336-09 | 1.72E+04 | 1.00E+0Z | 2.52E±05 | 9.50E+08 | 1.30E-04 | 15 | 1.50E+03 | 4.11E-03 | 1.77E-01 | 1.75E-04 | 2.58E-04 | | 106457
85501 | 1,4-Dichlorobenzene 1,2-Dichlorobenzene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.50E+02 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1.12E+04 | 8.69E-04 | 3.83E-02 | 1.75E-04 | 4.38E-04 | | 120821 | 1,2-Dichlorobenzane | 1 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.10E+01 | 2.52E+05 | 0.50E+05 | 1,30E-04 | 15 | 1.21E+04 | 6.51E-07 | 2.37E-05 | 1.75E-04 | 3.94E-02 | | 100527 | Benzaldehyde | } | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09
6.33E-09 | 1.72E+04
1.72E+04 | 1.13E+05 | 2.52E+06 | 8.50E+06 | | 15 | 1,32E+04 | 4,35E-04 | 1.87E-02 | 1.75E-04 | 2.25E-04 | | 91576 | Melhylnaphihaiene, 2- | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04
1.72E+04 | 1.74E+06
6.41E+03 | 2,52E+08
2,52E+08 | 9.50E+06
9.50E+08 | 1.30E-04 | 15 | 1.53E+03
1.51E+03 | 2.29E-05 | 9.84E-04 | 1.75E-04 | 1.35E-03 | | 92524 | Biohenvi, 1.1 | | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 8.81E+04 | 2.52E+08 | 9.50E+06 | 1,30E-04 | 15 | 47E+03 | 8.85E-04
2.55E-04 | 3.81E-02
1.14E-02 | 1.75E-04
1.75E-04 | 3.13E-04
3.15E-04 | | 208968 | Acenaphiliylene | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.00E+02 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1.51E+03 | 2.45E-04 | 1.056-02 | 1.75E-04 | 3.15E-04
3.38E-04 | | 63329 | Acenaphihene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 6.09E+04 | 2.52E+08 | 9.50E+08 | 1,30E-04 | 15 | 1.61E+04 | 3.67E-06 | 1.58E-03 | 1.75E-04 | 7,33E-04 | | 132649 | Dibenzofuran | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 8.33E-09 | 1,72E+04 | 1,79E+03 | 2.62E+06 | 8.50E+08 | 130E-04 | 15 | 1.47E+03 | 3.51E-03 | 1.51E-01 | 1.75E-04 | 1.66E-04 | | 66737 | Fluorene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 2.97E+04 | 2.52E+06 | 9 50E • 05 | 1.30E-04 | 15 | 1.62E+04 | 2.20E-08 | 9.48E-07 | 1.75E-04 | 8.16E-01 | | 85018 | Phenanthrene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 3.64E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1.48E+03 | | 4.90€-03 | 1,75E-04 | 3.50E-04 | | 120127 | Anthracene | 1 | 0.130 | 0.659 | 1.626-08 | 0,390 | 6.33E-09 | 1,72E+04 | 2.57E+03 | 2.62E+06 | 9.50E+08 | 1.30€-04 | 15 | 1.84E+04 | | 5.43E-04 | 1.75E-04 | 1.60E-03 | | C5-C8 | C5-C6 Allohalics | 1 | 0.130 | 0.659 | 1.62E-08 | 0,390 | 6.33E-09 | 1,72E+04 | 9.83E+04 | 2 52E+06 | 9.50€+08 | 1.30E-04 | 15 | NA. | 6.48E-01 | 2.79E+01 | 1.75E-04 | 3.64E-04 | | C9-C12 | C9-C12 Aliphatics | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 5.33E-09 | 1.72E+04 | 6.11E+04 | 2.52E+06 | 9.50E+08 | 1,30€-04 | 15 | NA. | 7.80E-01 | 3.36E+01 | 1.75E-04 | 3.64E-04 | | C9-C10 | C9-C10 Aromatics | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 4.31E+05 | 2.52E+08 | 9.50E+08 | 1.305-04 | 15 | NA NA | 3.98E-03 | 1.70E-01 | 1.75E-04 | 3.69E-04 | | C9-C18 | C9-C18 Aliphatics | 1 | 0.130 | 0,659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.7756+04 | 5.04E+00 | 2.62E+06 | 9.50E+08 | 1.30E-04 | 15 | , NA | 8.28E-01 | 3.68E+01 | 1.76E-04 | 3.64E-04 | | C11-C22 | C11-C22 Aromatics | 1 | 0.130 | 0,659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 4.10E+08 | 2.52E+05 | 9.50E+06 | 1.30E-04 | . 15 | NA. | 3.60E-04 | 1.55E-02 | 1.75E+04 | 4.27E-04 | Appandix C 4 Johnson & Ettinger Model - Data Entry Screen Inhalation of Volatiles from Soit Future Commercial Scenario - RNE Southweat Pretries, Welle GöH Superfund Site. Operable Whitney Barnal | Chemical | | Diffusion
path | Convection
path | Soil-water partition | Source
vapor | Crack | Average
Vapor
Now rate | Crack
effective
diffusion | Area of | Exponent of
equivalent
foundation
Pedet | Infinite
source
indoor
ettenuation | Infinite
source
bldg. | Unit
risk | Reference | |------------------|--|--|--------------------|----------------------|-----------------------|---------|------------------------------|---------------------------------|----------------------|--|---|-----------------------------|-----------------|-----------------| | CAS No. | | length, | length. | coefficient, | CORC | radius, | into bidg. | coefficient, | crack. | number. | coefficient, | conc., | factor, | conc., | | (numbers only, | • | L, | L, | K, | C | - | | Domok | Auren | exp(Parl) | a | Coulding | URF | RfC | | no dashes) | Chemical | (cm) | (cm) | (cm²/g) | (htt/w _p) | (cm) | (cm³/s) | (cm²/s) | (cm²) | (unitiess) | (unitless) | (µg/m³) | (μg/m³)·1 | (mg/m³) | | 96838 | Trimethylbenzene, 1,2,4- | | 15 | 7.43E+00 | N/A | 0.10 | 2.74E+01 | 4.77E-04 | 1,23E+03 | 2.75€+303 | 1.08E-05 | N/A | N/A | 8.0E-03 | | 540590 | Dichloroethylene, 1,2- (total) | | 16 | 2.67E-01 | N/A | 0.10 | 2.74E+01 | 3.77E-04 | 1.23E+03 | #NUMI | 1.08E-05 | N/A | *N/A | #N/A | | 108678 | Trimethylbenzene, 1,3,5- | 1 | 15 | 3.34E+00 | N/A | 0.10 | 2.74E+01 | 3.96E-04 | 1,23E+03 | #NUM | 1.086-05 | N/A | N/A | 8.0E-03 | | 104518 | n-Butylbenzene | 1 | 15 | 6.02E+00 | N/A | 0.10 | 2.74E+01 | 4.41E-04 | 1.23E+03 | #NUM | 1.08E-05 | N/A | #N/A | #N/A | | 91203 | Naphthalene | 1 | 15 | 4.00E+00 | 4.27E+03 | 0.10 | 2.74E+01 | 4.70E+04 | 1 23E+03 | 9.87E+307 | 1.08E-05 | 4.61E-02 | N/A | 3.0E-03 | | 135988 | Eurybenzene, sec- | ···· | 16 | 3.18E+00
8.22E+01 | N/A
N/A | 0.10 | 2,74E+01
2,74E+01 | 4.39E-04
4.86E-04 | 1,23E+03
1,23E+03 | #NUM
6.47E+297 | 1.08E-05
1.08E-05 | N/A
N/A | N/A
#N/A | 4.0E-01 | | 74873 | Chloromethane | - | 16 | 2.88E-02 | 3.24E+06 | 0.10 | 2.74E+01 | 7.66E-04 | 1.23E+03 | 1.14E+169 | 1.08E-05 | 3.512+00 | N/A | 9.0E-02 | | 75014 | Vinvi chioride | | 15 | 3 72E-02 | 6.48E+05 | 0.10 | 2.74E+01 | 8.44E-04 | 1.23E+03 | 5.27E+224 | 1.08E-05 | 8.99E+00 | 8.8É-08 | 1.0E-01 | | 74839 | Bromomelhane | 1 | 15 | 2.88E-02 | N/A | 0.10 | 2.74E+01 | 4.48E-04 | 1.23E+03 | #NUM! | 1.08E-06 | N/A | N/A | 5.0E-03 | | 75003 | Ethyl Chlorida | 1 | 16 | 2.88E-02 | 1.125+05 | 0.10 | 2.74E+01 | 7.66E-04 | 1,236+03 | 1.14E+169 | 1.08E-05 | 1.21E+00 | N/A | 1.0E+01 | | 75354 | 1,1-Dichloroethylene | | 15 | 1.18E-01 | 2.04E+05
| 0.10 | 2.74E+01 | 5.47E-04 | 1,23E+03 | 3.62E+284 | 1.08E-05 | 2.21E+00 | N/A | 2.0€-01 | | 76131 | Trichloro-1,2,2-triflouroethane, 1,1,2- | 1 | 16 | 4.50E-01 | N/A | 0.10 | 2.74E+01 | 1.75E-04 | 1.23E+03 | #NUM) | 1.07E-05 | N/A | N/A | 3.0E+01 | | 07841 | Acelone | 1 | 16 | 1.15E-03 | 1,376+03 | 0.10 | 2.74E+01 | 2 07E-03 | 1,23E+03 | 9.185+69 | 1 09E-05 | 1 48E-02 | N/A | N/A | | 75150
79209 | Carbon Diaulfide | 1 | 16 | 1.03E-01 | N/A | 0.10 | 2.74E+01 | 8.34E-04 | 1.23E+03 | 1.25E+228 | 1.00E+05 | N/A | N/A | 7.0E-01 | | 75092 | Melhyl Acetate Melhylene chloride | <u>-</u> | 16 | 6.64E-03 | N/A | 0.10 | 2.74E+01 | 8.61E-04 | 1,23E+03 | 1,17E+168 | 1.08E-05 | 1,73E+00 | #N/A
4.7E-07 | #N/A
3.0E+00 | | 158805 | trans-1,2-Dichloroethylene | | 16
15 | 2.34E-02
1.05E-01 | 1.60E+05
5.20E+04 | 0.10 | 2.74E+01
2.74E+01 | 8.35E-04
4.32E-04 | 1,23E+03
1,23E+03 | 6.55E+22T | 1.06E-06
1.06E-05 | 8.85E-01 | N/A | 2.0E-01 | | 1634044 | Melhyl-Tertlary-Butyl Ether | | 15 | 7.68E-02 | 4.58E+03 | 0.10 | 2.74E+01 | 6.87E-04 | 1,23E+03 | 9.48E+218 | 1.08E-06 | 4.98E-02 | N/A | 3 0E+00 | | 75343 | 1,1-Okthoroethane | — | 15 | 8.32E-02 | 1.82E+05 | 0.10 | 2.74E+01 | 4.58E-04 | 1.23E+03 | #NUMI | 1.08E-05 | 1.75E+00 | N/A | 5.0E-01 | | 158502 | cis-1,2-Dichloroelhylene | | 15 | 7.10E+02 | 5.66E+04 | 0.10 | 2.74E+01 | 4.59E-04 | 1.23E+03 | BNUM | 1,08E-05 | 8.12E-01 | N/A | 2.0E-01 | | 78933 | Butanone, 2- (MEK) | | 15 | 7.66E-03 | N/A | 0.10 | 2.74E+01 | 9.45E-04 | 1.23E+03 | 1.18E+153 | 1.08E-05 | N/A | N/A | N/A | | 71550 | 1,1,1-Trichioroethane | 1 | 15 | 2.20E-01 | N/A | 0.10 | 2.74E+01 | 4.75E-04 | 1.23E+03 | 4.35E+304 | 1,056-05 | N/A | N/A | 2.2E+00 | | 110827 | Cyclohexane | 1 " | 15 | 3.206-01 | N/A | 0.10 | 2.746+01 | 4,85E-04 | 1,236+03 | 3,16E+298 | 1.08E-06 | N/A | #N/A | #N/A | | 71432 | Benzene | 1 | 15 | 1.18E-01 | 7.41E+04 | 0.10 | 2.74E+01 | 5.42E-04 | 1.23E+03 | 1.81E+267 | 1.08E-05 | 8.02E-01 | 7.8E-08 | 3.0E-02 | | 79015 | Trichiaroethylene | | 15 | 3.32E-01 | 1.09E+06 | 0.10 | 2.74E+01 | 4.83E-04 | 1.23E+03 | 3.77E+299 | 1,08E-05 | 1.18E+00 | 1.1E-04 | 4.0E-02 | | 108872 | Methyl cyclohexane | 1 | 15 | 5.36E-01 | 3,35E+06 | 0.10 | 2.74E+01 | 5.98E-04 | 1,23E+03 | 1.50E+242 | 1.08E-05 | 3.62E+01 | N/A | 3.0E+00 | | 108883
127184 | Toluene Teltachioroethylene | 1 | 15 | 3,64E-01 | 1,28E+05 | 0.10 | 2.74E+01 | 5.34E-04 | 1.23E+03 | 1.10E+271 | 1.06E-05 | 1.39E+00 | 5.9E-06 | 4 OE-01 | | 108907 | Chlorobenzene | | 15
15 | 3.10E-01
4.38E-01 | 9,19E+04
3,21E+04 | 0.10 | 2.74E+01
2.74E+01 | 4.39E-04
4.56E-04 | 1,23E+03 | #NUM
#NUM | 1.08E-06 | 9.82E-01
3.46E-01 | N/A | 6 OE-02 | | 100414 | Ethylbenzene | | 15 | 7.28E-01 | 2.68E+04 | 0.10 | 2.746+01 | 4.50E-04 | 1,23E+03
1,23E+03 | #NUM | 1.08E-05 | 2.90E-01 | IVA | 1.0E+00 | | 1330207 | Xylenes | 1 | 15 | 4.82E-01 | N/A | 0.10 | 2.74E+01 | 3.76E-03 | 1.23E+03 | 4.03E+38 | 1.09E-05 | N/A | N/A | 1.0E-01 | | 100425 | Styrene | | 15 | 1.56E+00 | N/A | 0.10 | 2.74E+01 | 4.47E-04 | 1.23E+03 | #NUM | 1.08E-05 | N/A | #N/A | #N/A | | 98525 | Isopropylbenzene | i | 15 | 1.86E+01 | N/A | 0.10 | 2.74E+01 | 3.95E-04 | 1,23E+03 | #NUM | 1.08E-05 | N/A | NA | 4.0E-01 | | 70346 | 1,1,2,2-Tetrachloroethane | 1 | 15 | 1.87E-01 | N/A | 0.10 | 2.74E+01 | 5.66E-04 | 1,23E+03 | 1.98E+256 | 1.08E-05 | N/A | #TVA | #N/A | | 541731 | Dichlorobenzene, 1,3- | 1 | 15 | 3,40€-01 | 3.19E+04 | 0.10 | 2.74E+01 | 2.58E-04 | 1.23E+03 | #NUM! | 1.07E-05 | 3.42E-01 | N/A | N/A | | 106467 | 1,4-Dichlorobenzene | 1 | 15 | 1,23E+00 | 6.56E+03 | 0.10 | 2.74E+01 | 4,38E-04 | 1,23E+03 | MNUMI | 1.08E-06 | 7.19E-02 | N/A | 8.0E-01 | | 95601 | 1,2-Olchlorobenzene | 11 | 15 | 1.07E-01 | 3.94E+00 | 0,10 | Z 74E+01 | 3.94E-02 | 1.23E+03 | 4.74E+03 | 1.09E-05 | 4 28E-06 | N/A | N/A | | 120821 | 1,2,4-Trict-lorobenzene | 1 | 15 | 3.56E+00 | N/A | 0.10 | 2.74E+01 | 2.25E-04 | 1.23E+03 | MUNI | 1.07E-05 | N/A | N/A | 2.0€-01 | | 100527 | Senzaldehyde | 1 | 15 | 6.54E-02 | N/A | 0.10 | 2.74E+01 | 1.35E-03 | 1.23E+03 | 2.80E+107 | 1.08E-05 | N/A | #N/A
N/A | #N/A | | 91576
92524 | Methylnaphihalens, 2-
Siphenyl, 1,1'- | | 15 | 1.70E+01
1.25E+01 | 1.20E+04
N/A | 0.10 | 2.74E+01
2.74E+01 | 3,13E-04
3,16E-04 | 1.23E+03 | #NUMI | 1.08E-06
1.08E-05 | 1.29E-01
N/A | N/A
N/A | 3.0E-03 | | 208988 | Acersohimiene | 1 | 15 | 9.57E+00 | 4.31E+02 | 0.10 | 2.74E+01 | 3.38E-04 | 1.23E+03
1.23E+03 | #NUM | 1.08E-05 | 4.64E-03 | N/A | 3.0E-03 | | 83329 | Acensphilhene | 1 | 15 | 1.42E+01 | N/A | 0.10 | 2.74E+01 | 7.33E-04 | 1,23E+03 | 2.13E+197 | 1.08E-05 | N/A | N/A | 3.0E-03 | | 132649 | Dibenzofuren | | 15 | 1.83E+Q1 | 1.84E+04 | 0,10 | 2 74E+01 | 1,55E-04 | 1.23E+03 | WNUM | 1.07E-05 | 1.75E-01 | N/A | N/A | | 88737 | Fluorene | | 15 | 1.54E+01 | N/A | 0.10 | 2.74E+01 | 8,16E-01 | 1.23E+03 | 1.50€+00 | 3.246-06 | N/A | N/A | 3.0E-03 | | 85018 | Phenanthrene | i | 15 | 2.63E+01 | 6.27E+03 | 0.10 | 2.74E+01 | 3.50E-04 | 1 23E+03 | #NUM | 1.085-05 | 8.76E-02 | N/A | 3.0€-03 | | 120127 | Anthracene | 1 | 15 | 5.90E+01 | N/A | 0.10 | 2.74E+01 | 1.80€-03 | 1.23E+03 | 5.14E+90 | 1.08E-05 | N/A | N/A | 3.0E-03 | | C5-C8 | C5-C8 Aliphatics | 11 | 15 | 4.53E+00 | 3.64E+08 | 0.10 | 2.74E+01 | 3,84E-04 | 1.23E+03 | #NUMI | 1.08E-06 | 4.14E+03 | N/A | 2.0E-01 | | C9-C12 | C9-C12 Aliphatics | 1 | 15 | 3.00E+02 | 6.76E+06 | 0,10 | 2.74E+01 | 3.84E-04 | 1.23E+03 | #NUM: | 1.08E-05 | 7,29E+01 | N/A | 2.0E-01 | | C9-C10 | C9-C10 Aromatics | 1 | 15 | 3.56E+00 | 1.95€+07 | 0.10 | 2.74E+01 | 3.59E-04 | 1,23E+03 | #NUM | 1.00E-05 | 2.10€+02 | N/A | 5.0E-02 | | C9-C18 | C9-C18 Aliphatics | 1 | 15 | 1.36E+03 | 1.68E+08 | 0.10 | 2.74E+01 | 3.54E-04 | 1.23E+03 | #NUM | 1.08E-05 | 1.70E+03 | N/A | 2.0E-01 | | Q11-C22 | C11-C22 Aromatics | | 15 | 1.00E+01 | 8.23E+08 | 0.10 | 2.74E+01 | 4.27E-04 | 1.23E+03 | #NUM) | 1.08E-05 | 8.72E+01 | N/A | 5.0E-02 | (Accordor C. 4 Johnson & Edinger Model - Date Entry Screen Inhalation of Votalities from Soil Future Commercial Scanario - PAME Southwest Proteties, Wiele G&H Superfund Site, Coorable Unit 2 Whitper Bartel ## RISK-BASED SOIL CONCENTRATION CALCULATIONS: ## INCREMENTAL RISK CALCULATIONS: | Chemical
CAS No.
(numbers only, | · | indoor
woodund
eoil
conc.,
carcinogen | Indeor
secolure
soil
conc.,
noncercinogen | Risk-based
Index
exposure
soil
conc., | Soli
exteration
conc.,
C _{en} | Final
indoor
exposure
soil
conc., | | Incremental
risk from
vapor
Intrusion to
indoor air.
cardinogen | Hezerd
quotient
from vapor
intrusion to
indoor er,
noncerolnogen | | |---------------------------------------|--|---|---|---|---|---|-------|--|---|-----| | no dashee) | Chamical | (μαkg) | (ug/kg) | (µg/kg) | (µg/kg) | (µg/kg) | | (unitiees) | (unitiess) | | | 95636 | Trimedis/benzere, 1,24- | NA | NA. | NA | 1.395+05 | NA . | | NA | NA NA | | | 540590
108678 | Dichioroethylene, 1.2- (total) | NA
NA | NA
NA | NA
NA | 5.96E+02 | NA
NA | | NA . | NA
NA | | | 106678
104518 | Trimethylbenzene, 1,3,5-
n-Butylbenzene | NA NA | NA
NA | NA
NA | 7.13E+04
6.63E+03 | NA. | | 22 | | | | 91203 | Machibialisms | NA. | Ē | NA | 1.30E+05 | N/A | | NU, | 3,5E-03 | | | 99876
135968 | leopropytokiene, 4-
Butythenzane, seç- | NA NA | NA NA | NA
NA | 7.31E+05
1.10E+08 | NA
NA | | NA . | NA
NA | | | 74873 | Chicromethane | NA. | NA . | NA. | 1.37E+00 | NA. | | NA. | 8.9E-03 | | | 75014
74539 | Vinyl chicride
Sromomethane | NA
NA | \$ \$Z | NA
NA | 8,33E+06
3,69E+06 | - #- | | 5.0E-06
NA | 1.6E-02
NA | | | 75003 | Ethyl Chloride | NA. | 77 | NA. | 1,37E+00 | NA. | | NA | 2.8E-06 | | | 75354
76131 | 1,1-Dichloroetylene | NA. | NA
NA | NA
NA | 6.39E+05 | NA NA | | NA
NA | 2.5E-03
NA | | | 70131
67645 | Trichiore-1,2,2-frificuroethere, 1,1,2-
Acetone | - NA | - NA | NA NA | 3.99E+06
2.01E+08 | NA | | NA. | NA. | | | 75150 | Carbon Disultide | NA. | NA. | NA . | 6,78E+05 | NA | | NA . | NA_ | | | 79209
76092 | Methyl Acutate
Methylene chloride | NA
NA | NA NA | NA
NA | 5.03E+07
2.96E+06 | NA
NA | | NA
5,6€-08 | 1.3E-04 | | | 166605 | trans-1.2-Dichicrosthrians | NA . | NA. | NA. | 2.12E+06 | NA | | NA. | 1.0E-03 | | | 1834044
75343 | Metryl-Tertlery-Butyl Ether | NA
NA | NA
NA | NA
NA | 1,42E+07
1,39E+08 | NA
NA | | NA
NA | 3.8E-06
8.0E-04 | | | 156592 | 1,1-Dichloroethene
cle-1,2-Dichloroethylene | NA. | NA. | NA
NA | 9,78E+05 | NA
NA | | NA NA | 7.0E-04 | | | 78933 | Butanons, 2- (MEK) | NA. | NA. | NA . | 4.63E+07 | NA. | | NA NA | NA | | | 71556
110627 | 1,1,1-Trichlorosthans
Cycloheume | NA. | NA NA | NA
NA | 6.01E+05 | NA
NA | | NA NA | NA
NA | | | 71432 | Benzene | NA. | NA. | NA. | 5,74E+05 | NA. | | 5.1E-07 | 6.1E-03 | | | 79018
108872 | Trichlorosthylene
Methyl cyclohexane | NA
NA | NA NA | NA
NA | 6.05E+05 | NA. | | 1.1E-05 | 6.7E-03
2.6E-03 | | | 108883 | Toluene | NÃ. | NÃ. | NA. | 2.96E+04
3.02E+08 | NA. | | - NA | 7.9E-04 | | | 127184 | Tele and the continuous | NA. | NA. | NA
NA | 1.08E+05 | NA. | | 4.8E-07 | NA
1.3E-03 | | | 108907 | Chlorobenzene
Ethylbenzene | NA
NA | NA
NA | NA
NA | 3 04E+05
1.58E+05 | NA | | NA | 1.3E-03 | | | 1330207 | Xylenes | NA | NA. | NA. | 1.50E+05 | NA. | | NA. | NA
NA | | | 100426
96828 |
Streme
leopropylbenzene | NA
NA | NA
NA | NA
NA | 6.44E+06
1.06E+06 | NA
NA | | NA
NA | NA. | | | 79345 | 1,1,2,2-Tetrachlorostiums | NA_ | NA. | NA | 1.15E+05 | . NA . | | NA | 7 | | | 541731
108467 | Dichloroberusme, 1,3-
1,4-Oichlorobenzene | NA NA | HA HA | *** | 3,62E+04
1,06E+05 | NA
NA | | NA | NA
2.1E-05 | | | 95501 | 1,2-Okhiorobenzene | NA | NA. | , NA | 8.50E+06 | NA | | NA | NA | | | 120821
100627 | 1,2,4-Trichtorobenzene | NA
NA | NA. | 3 | 1.13E+06 | NA NA | | NA
NA | NA
NA | | | 100627
91575 | Benzaldehyde
Methylmaphthalena, 2- | NA NA | NA. | NA. | 1,74E+06
4,24E+05 | NA NA | i | NA. | 9.8E-03 | | | 92524 | Biphersi, 1,1'- | NA. | NA. | - 24 | 8.81.E+04 | I \ | i | NA. | NA. | | | 208968
83320 | Acerechthylene
Aceruphthene | NA
NA | NA
NA | NA
NA | 3,84E+04
6,09E+04 | NA
NA | | NA. | 3.5E-04 | | | 132549 | Districtures . | NA. | NA | NA. | 1.65E+05 | NA | | NA. | NA. | | | 66737
65018 | Fluorene
Phonasshrene | NA NA | NA
NA | HA.
NA | 2.97E+04
3.64E+04 | NA
NA | Į | NA NA | NA
5.16-03 | | | 120127 | Antrecane | NA. | NA NA | NA. | 2.57E+03 | NA | | NA. | NA. | | | C5-C8
C9-C12 | CS-CS Allehatics
C9-C12 Allehatics | NA
NA | NA
NA | NA. | 7,85E+07
2,12E+07 | NA
NA | | NA
NA | 4.7E+00
8.JE-02 | | | C9-C10 | C9-C10 Aromatica | NA. | NA | NA. | 1,92E+08 | NA. | } | NA | 9.66-01 | | | C9-C18
C11-C22 | C9-C16 Alphatics
C11-C22 Armatics | NA
NA | NA. | - X | 1.35E+07 | NA. | i | | 1.9E+00
3.1E-01 | | | C11+G22 | CTT-C22 Aromages | <u>N</u> | J NA | <u>NA</u> | 6.925+07 | NA. | ı | | 3,15-01 | l | | | | | | | | | | 95% UCL | | | | | | | | | | | | Cancer
Risk | 95% UCL
HI | | | | | | | | | | TOTAL | 2E-05 | 8.1E+00 | | | | | | | | | | | | _ | | | | | | | | | | | | = Cancer risk | | | | Trimathylberteans, 1,2,4- | MESSAGE: Se | d conc. >= saturati | en (Caal), Risk | MO calculated | et Casal. | | | or HQ/Hr>1E | 100 | | | Dichioroethylene, 1,2- (lotal) | MESSAGE: 84 | al conc. >= ealurati | ion (Ceal), Risk | /HQ calculated | at Cost. | | | | | | | Trimetribenzene, 1,3,5-
n-Buhibenzene | WESSAGE: 84 | d cong. >4 esturad
A cong. per saturad | lon (Ceal), Risk
Ion (Ceal), Risk | AHQ calculated
NAC calculated | at Coal.
et Coal | | | | | | | Nasirthelene | | | | | | | | | | | | lecoropytokiene, 4+
Rusybersene, sec- | MESSAGE S | ali conc. 74 saturati
Ali conc. 24 saturati | ion (Casi), Risk
ion (Casi), Risk | MQ calculated
MG calculated | at Coal.
at Coal | | | | | | | Chicrometrane | | | | | | | | | | | | Virni chioride
Romamethene | MESSAGE S | d cono. >= saturat | lon (Cast) Plak | AC calculated | at Cont | | | | | | | Ethyl Chicride | | | | | | | | | | | | 1,1-Dichlorostyviene
Trichloro-1,2,2-inflourosthane, 1,1,2- | MESSAGE & | al conc. >= saturat | ion (Carris Risk | HO calculated | at Coat | | | | | | | Acetone | | | | | | | | | | | | Carbon Disulfide
Methyl Acetate | MESSAGE: S | al conc. ≥ saturat
al conc. ≥ saturat | ion (Ceut). Riek
Ion (Ceut). Rud | /HQ calculated
/HQ calculated | at Coat.
at Coat. | | | | | | | Methylane chloride | | | | | | | | | | | | trane-1,2-Dichicrostrylene
Methyl-Terlany-Butyl Ether | | | | | | | | | | | | 1,1-Dichloroethane | | | | | | | | | | | | cie-1,2-Dichloroethylene
Butanone, 2- (MEK) | MESSAGE S | oli cono, >= satural | lon (Guat), Pink | AHQ calculated | et Coat. | | | | | | | 1,1,1-Tricherouthane | MESSAGE: S | oli cono. 🕶 saturat | ion (Cast), Risk | HQ calculated | ed Coat. | | | | | | | Cycloheoene
Benzene | MESSAGE; S | al cons. >= sutural | rom (Çavat), Hüsk | INC CHOUSED | er CER. | | | | | Accerdit C.A. Johnson S Ethnor Model - Dela Enford Screen Innation of Woldfer Iron Spit Future Commercial Scenario - CT Southwest Promises Wells Glidt Scenario Ste. Oceanible Unit 2 Whiter Berny Whiter Scenario CALCULATE PUBK-BASED SOIL CONCENTRATION (enter "X" in "YES" bin) SL-SCREEN Varsion 2.3; 03/01 OR CALGULATE INCREMENTAL RISKS FROM ACTUAL, SOUL CONCENTRATION WHILE "X" In THE BUT BUT IN INTER BOTH SOULD INSERT | | ENAN INDIA SOE CO | ncentration. | gerzen
Decih | ENTER | ENTER | EMTER | | ENTER | | | | | | | | | | | | | |------------------|--|----------------------|--------------------------|-----------------------------|----------------|-------------------|-----------------|----------------------------|-----------------|---------------------------|------------------------------|-----------------------------|--------------------------|--|-----------------------|------------|-------------|--------------|-----------------------------|--| | ENTER | | ENTER | Delice crede | | | Vertice zone | | Uper-pathed | ENTER | EKTER | ENTER | ENTER | ENTER | RSTAS | EMTER | ENTER | ENTER | ENTER | ENTER | ENTER | | Chemical | | Magn | (o bottom
of enclosed | Depth below
erade to top | Avertice | 8C9
4081904 | | vektore zone
noli venor | Vedore core | Vacione zone
and lotal | Vaccos core | Vacces zone | Averaging | Avenages | • | | | _ | Tatos | Target hazard | | CAS No. | | conc. | enege floor. | of contemination, | inversium. | Aread to estimate | e OR | Dermeebiling | Duff decement | DOMONEY. | poli meter-hand
porosiliv | edi arasık
amban hedion. | lime for
cercinocere. | firm for
representations. | Excesure
duration. | frequency. | Executation | Coverage | rink tor
certifications. | tuxtient for
toncertinggens. | | (numbers only, | | GR. | L | LI | T _e | 40f suppor | | 4 | Pa ^A | n* | 6_* | f" | ATC | ATNE | ED. | EP. | हा | ÇF. | TH | THQ | | /ii) ((pp/yee) | Chemical | (vg1·g) | (18 or 200 pm) | (pm) | (fo) | permeability) | Note _ | (cm) | (g/om³) | (unites) | (cm²/cm²) | (unit legs) | (vre) | (MII) | Dermit. | (devent) | (hm/dey) | (harks) | (unities) | (ACETHOR) | | Maria | Trimethytherizane, 1,2,4- | | 10 | 16 | 10 | LB | | | | | | | | | | | | | | | | Here | Dichlorosthylane, 1,2- (lotal) | 1 | 18 | 16 | 10 | LS | + ; + | | 1.5 | 0 43 | 03 | 0.002 | 70
70 | 9 | | 219 | | 8750 | 1.0E-06 | | | 19679 | Trimethybergene, 1.3.5- | 1 | 15 | 15 | 19 | LS | + ; + | | 1.5 | 043 | 03 | 0.002 | - 7a | 3 | | 219 | | 8760 | 1.0E-06 | + | | 104518 | n-Bundbenzene | | 15 | 16 | 10 | UB | ┿┿┪ | | 15 | 043 | 03 | 0.002 | 70 | - | | 219 | - | 8760
8760 | 1.0E-08 | | | p1300 | Naphthalene | 2,746+03 | 15 | 15 | 10 | 63 | 1 1 | | 1.5 | 0 43 | | 0.002 | 70 | 3 | - | 210 | | 6760 | 1.0E-06 | | | Nos74 | leopropykoluene, 4- | 1 | 15 | 16 | 10 | LB | 1 | | 16 | 043 | 0.3 | 0 002 | 70 | 9 | | 210 | | 5760 | 1.0E-06 | +++ | | 120000 | Butybenzene, sec- | | 15 | 16 | 10 | l\$ | 1-1-1 | | 16 | 0.43 | 0.3 | 0.002 | 7a | 9 | | 210 | | 6760 | 1.06-06 | 1 | | Fea73 | Chloromethane | 2.49E+02 | 15 | 18 | 10 | Ú.B | 1 | | 16 | 0.43 | 03 | 0 002 | 70 | 9 | - | 218 | 8 | 6760 | 1.0E-06 | 1 | | 79014 | Viryl chloride | 2.61E+02 | 15 | 18 | 10 | rg. | . 1 | | 1.5 | 0.43 | 0.3 | 0 002 | 70 | 9 | · · · | 219 | 8 | 8780 | 1.0E-06 | · | | P-MARP | Bromomethane | | 15 | 16 | 10 | LB | 1 | | 18 | 0 43 | 03 | 0.003 | 70 | 9 | | 210 | 6 | 6750 | 1.0E-06 | 1 | | 79000 | Ethyl Chloride | 8 60E+01 | 15 | 15 | 10 | Le. | 1 | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 9 | 9 | 110 | | 6750 | 1.0E-06 | | | - Passa
Passa | 1,1-Dichloroethylene | 8.34E+01 | 15 | 16 | 10 | LB | 1 | | 1 8 | 0.43 | 0.3 | 0.003 | 70 | 3 | , B | 219 | 6 | 6760 | 1 0E-06 | 1 | | 97941 | Trichloro-1.2 2-iriflournethane 1.1.7- | 3.245 02 | 15 | 1 13 1 | | LS | - | | | 0.43 | 05 | 0.002 | 70 | | | 210 | | 6760 | 1.0E-06 | | | 19199 | Carbon Disulfide | 2.2.7. | 16 | 15 | 10 | La | 1 | | 15 | 0.43 | 0.3 | 0 002 | 70 | - 3 | | 210 | 6 | 8760 | 1.0E-08 | | | 79900 | Methyl Acetale | | 16 | 15 | 10 | LS | -; | | 18 | 0.43 |
0.3 | 0 002 | 70 | | | 219 | - ; | 6750 | 1.0E-06 | +++ | | FIGUR | Metrylene chloride | 7.27E+02 | 15 | 15 | 10 | LG | +++ | | 18 | 0.43 | 03 | 0 002 | 70 | | | 219 | 6 | 8750
6750 | 1.0E-06 | | | 15eac# | trans-1,2-Dichloroethylene | 7.73E+Q1 | 16 | 15 | 10 | LS | 1 | | 1.6 | 0.43 | 03 | 0 002 | 70 | | - | 219 | | 8780 | 1.0E-06 | + ; + | | 1634044 | Methyl-Tartlary-Butyl Ether | 675€+01 | 15 | 718 | 10 | LB | 1.4 | | | 043 | 03 | 0 002 | 70 | - | - | 210 | · · · | 8760 | 1.0E-06 | - | | F8343 | f,1-Dichkroethane | 3.58E+02 | 15 | 15 | 10 | L8 | 1 | | 1.5 | 0.43 | 03 | 0.002 | 70 | 9 | | 219 | i | 8760 | 1.0E-06 | + | | 158640 | cie-1,2-Olchky cethylene | 1.60E+02 | 15 | 18 | 10 | L6 | 1 | | 1.8 | 0.43 | 0.3 | 0.002 | 70 | | | 216 | | 5760 | 1.0E-06 | + | | Padd | Butanone, 2- (MEK) | | 18 | 18 | 10 | LS | 1 | | 16 | 0.43 | 03 | 0.002 | 70 | - | | 219 | 8 | 8750 | 1 DE-08 | | | P1959 | 1,1,1-Trichloroethene | | 15 | 35 | 14 | L& . | 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | á | | 219 | 8 | 8780 | 1.0E-06 | 1 | | 110427 | Сустоненапе | | 15 | 16 | 10 | LB | 1 | | 15 | 0.45 | 03 . | 0.002 | 70 | 9 | | 219 | • | 8760 | 1.0E-06 | · | | 71432 | Benzere | 8.08E+01 | 16 | 15 | 10 | LS | 1 | | 16 | 0 43 | 00 | 0 0x12 | 70 | 9 | 6 | 219 | A | 6760 | 1,0E-08 | 1 1 | | Page | Yrichloroethylene | 2.91E+02 | 15 | 18 | 10 | LS | 1 | | 1,5 | 0.48 | 03 | 0.002 | 70 | 9 | | 218 | 8 | 876D | 1.0E-06 | 1 1 | | 106672 | Mathyl cyclohexane | 4.45E+02 | 16 | 15 | 10 | l8 | 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | | ۵ | ŜĠ | | 8760 | 1.0E-06 | 7 | | HAM | Tokume | 3 85E+02
1 47E+02 | 16 | 18 | 10 | LS | 1 | | 1.5 | 0.43 | 0.3 | 0.005 | 70 | 9 | • | 219 | | 6760 | 1.0E-08 | ١ ١ | | 15)(fr | Tetrachicrosthylens
Chlorobenzone | 11E-02 | 16 | 15 | 10 | Lŝ | 11. | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 1 2 | | 6 | | 8760 | 1.0E-08 | 1 | | 100414 | Ethylbercone | 1.84E+02 | 10 | 15 | 10 | LS
LS | 1 | | | 0 45 | . 03 | 0.002 | 70 | 9 | 9 | 219 | | 5760 | 1.0E-56 | 1 | | izzen | Xuenes | 1.542.152 | 15 | 15 | 19 | LS
LB | 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 9 | , | 219 | 8 | 6760 | 1.0E-06 | ' | | 100420 | Styrene | + | 15 | 15 | 10 | LS | | | 1.5 | 0.43 | 0.3 | 0.002 | | 9 | В | 719 | 8 | 8780 | 1.0E-08 | 1 1 | | *** | leopropybenzene | _ | 15 | 15 | 10 | LS | 1 | | 1.5 | 0.43 | 03 | 0 0002 | 70
70 | 9 | 9 | 219 | 8 | 6750 | 1.0E-06 | 1.1 | | 1994 | 1,1,2,2-Tetrachiorosthana | į | 16 | | 10 | 1.8 | +++ | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | | 9 | 219 | 8 | 8780 | 1.05-08 | | | WITH | Cichlorobenzene, 1,3- | 1006-02 | 15 | 15 | 10 | lã | 1 | | 1.8 | 0.43 | 0.3 | 0.002 | 70 | | 9 | 210 | | 5760 | 1.06-06 | + ; | | 18647 | 1,4-Dichkroberusme | 2 506+02 | 16 | 19 | 10 | LS | 11 | | 1.5 | 043 | 0.3 | 9.002 | 70 | | | 219 | ě. | 8760
8760 | 1.05-06 | +++ | | 99607 | 1,2-Dichiorobenzene | 5 10E+01 | 15 | 15 | 10 | L& | 1 1 - | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | • | | 219 | | 5760 | 1,05-08 | | | 130471 | 1,2,4-Trichlorobenzene | | 15 | 15 | 10 | L8 | 1 | | 1.8 | 0.43 | 0.5 | 9.002 | 20 | | | 219 | - | 6780 | 1.0E-08 | | | 100037 | Benzeidehyde | | 16 | 18 | 10 | 1.5 | , | | 1.8 | 0.43 | 0.3 | 0.002 | 70 | • | 9 | 218 | 8 | 8760 | 1.085-08 | | | ma | Mathylnaphthalane, 2- | 8.41E+03 | 16 | 19 | 10 | į\$ | 7 | | 1.5 | 0.43 | 6.3 | 0.002 | 70 | | | 3/9 | - 6 | 8750 | 1,0E-05 | | | 23034 | Biphenyl, 1,1% | | 15 | 16 | 10 | 1.5 | . 1 | | 1.5 | 0.45 | 0.3 | 0 0072 | 70 | 9 | | 219 | - 8 | 8760 | 1.0E-06 | 1 | | 300001 | Acenaphthylene | 4.00E+32 | 16 | 15 | 10 | LŠ | 1 | 1 | 1,8 | 0.43 | 03 | 0.002 | 70 | - 1 | 6 | 219 | ь | 8780 | 1.06.06 | 1 | | 432 | Aceruphthene | | 16 | 15 | 10 | Ls | 3 | | 1,5 | 0.43 | 03 | 0.002 | 70 | | | 219 | | 8780 | 1.06-00 | · · · · · | | 12264 | O/benzofuran | 1.79E+03 | 15 | 15 | 10 | 1.5 | 1 | | t.5 | 0.43 | 03 | 0.002 | 70 | B | Ç | 219 | 6 | 8780 | 1.0€-06 | 1 | | a4717 | Florens | L | 16 | 16 | 10 | LS | 1 | | 1.5 | 043 | 0.3 | 0.005 | 70 | 9 | 9 | 219 | 6 | 8780 | 1,06,408 | , | | en H | Phanshivene | 3.56E+04 | 16 | 15 | 10 | LS | 1 | | (,5 | 0.43 | 0.3 | 0.002 | 70 | | 9 | 570 | - 6 | 8780 | 1.0E-06 | 3 | | 120127 | Anthracens
C6-C6 Alchalics | B.ADE+OL | 16 | 16 | 10 | LS | 1 | | 1.5 | 0.43 | 0.3 | g pag | 70 | | 0 | 210 | | 8780 | 1.06-06 | 1 | | 04-04 | C6-C6 Alphalice
C9-C12 Alighatics | 6.11E-04 | 16 | 15 | 10 | LS | 1 | | 1.6 | 0 43 | 03 | 0.002 | 70 | | 9 | 219 | | 6740 | 1.0E-08 | 1 | | C9-C10 | C9-C12 Alignatos
C9-C10 Aromatica | 4.31E-05 | 15 | 15 | 10 | LS | 1.1 | | 1.3 | 0.43 | 0.3 | 0.002 | 70 | 9 | P | 219 | | 8790 | 1,0E-08 | -1 | | cacu, | C9-C10 Aromatics | 9.255-35 | 18 | 16 | 10 | LS
LS | 14.1 | | 1.5 | 0.43 | 0.3 | 0.007 | 70 | <u> </u> | | 219 | 6 | 8760 | 1.0€-06 | 1 | | 611-020 | C11-G22 Aromatics | 9.24E-06 | 15 | ; | 10 | LS US | 1 | | 1.5 | 0.43 | | 0.002 | 70 | 9 | • | 219 | | 8790 | 1,06-06 | 1 | | Barra | DITITUDE AND THE STATE OF S | A-6-E-00 | L | ر ،، | 10 | 1 | | | 1.9 | 0.43 | 0.3 | 0.002 | 70 | 1 | | 219 | 8 | 8780 | 1.0E-06 | | Note: 1) Dissued and personation from lighter 7 of User's Outste for Evaluation Subscribes Viscor instrusion into Susseting (U.S. EPA Aims 19, 2000) were used for soft water Band parally (A_L soil organic centrus instant instant (A_L and soil powerly soi Appendix C.4 Johnson & Ettinger Model - Data Entry Screen Inhalation of Volatiles from Soil Future Commercial Scenario - CT Southwest Prperties, Wella G&H Superfund Site, Operable Unit 2. Whitney Barrel | Chemical CAS No. (numbers only. | | Diffusivity
In air,
D. | Diffusivity
in water,
D., | Henry's
law constant
at reference
temperature,
H | Henry's
law constant
reference
temperature,
T _R | Enthalpy of
vaporization at
the normal
boiling point,
ΔH _{v.b} | Normal
boiling
point,
T _B | Critical
temperature,
T _c | Organic
carbon
partition
coefficient,
K∝ | Pure
component
water
solubility,
S | Unit
risk
factor,
URF | Reference
conc.,
RfC | Physical
state at
soil
temperature, | |---------------------------------|---|------------------------------|---------------------------------|--|--|---|---|--|--|--|------------------------------------|----------------------------|--| | no dashes) | Chemical | (cm²/s) | (cm²/s) | (atm-m³/mol) | (°C) | (cal/mol) | (°K) | (ÅK) | (cm ³ /g) | (mg/L) | (μg/m ³)* ¹ | (mg/m ³) | (S,L,G) | | 95636 | Trimethylbenzene, 1,2,4- | 7.80E-02 | 9.03E-06 | 5.70E-03 | 25 | 1.25E+03 | 442.30 | 649.11 | 3.72E+03 | 5.70E+01 | N/A | 6.0E-03 | | | 540590 | Dichloroethylene, 1,2- (total) | 5.59E-02 | 6.47E-06 | 4,30E-04 | 20 | 1.32E+03 | 585.00 | 877.50 | 1,28E+02 | 1.30E+00 | #N/A | #N/A | 0.0E+00 | | 108678 | Trimethylbenzene, 1,3,5- | 6,48E-02 | 7.86E-06 | 7.81E-03 | 25 | 1.25E+03 | 442.30 | 649.11 | 1.67E+03 | 2.00E+01 | N/A | 6.0E-03 | L | | 104518 | n-Butylbenzene | 7.25E-02 | 8.39E-06 | 1,25E-02 | 25 | 1.23E+03 | 456.00 | 684.00 | 2.51E+03 | 1.26E+00 | #N/A | #N/A | | | 91203 | Naphthalene | 5.90E-02 | 7.50E-06 | 4.83E-04 | 25 | 1.04E+04 | 491.14 | 748.40 | 2.00E+03 | 3.10E+01 | N/A | 3.0E-03 | S | | 99876 | fsopropyttoluene, 4- | 7.25E-02 | 8.39E-06 | 8.60E+00 | 25 | 1.24E+03 | 450.10 | 652.04 | 1.58E+03 | 2.34E+01 | N/A | 4.0E-01 | L | | 135988 | Butylbenzene, sec- | 8.00E-02 | 8.00E-06 | 1,67E-02 | 25 | 1.24E+03 | 446.65 | 669.98 | 3.11E+04 | 1.76E+01 | #N/A | #N/A | 0.0E+00 | | 74873 | Chloromethane | 1.26E-01 | 6,50E-08 | 8.67E-03 | 25 | 1.35E+03 | 249.00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 9.0E-02 | 0.0E+00 | | 75014 | Vinyl chloride | 1.06E-01 | 1.23E-05 | 2.71E-02 | 25 | 5.25E+03 | 259.25 | 432.00 | 1.86E+01 | 2.76E+03 | 8.8E-06 | 1.0E-01 | L | | 74839 | Bromomethane | 7.28E-02 | 1.21E-05 | 6.22E-03 | 25 | 5.49E+03 | 276.50 | 414.75 | 1,43E+01 | 1.52E+04 | N/A | 5.0E-03 | 0.0E+00 | | 75003
75354 | Ethyl Chloride | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1.36E+03 | 249.00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 1.0E+01 | L. | | | 1,1-Dichloroethylene | 9.00E-02 | 1,04E-05 | 2.61E-02 | 25 | 6.25E+03 | 304.75 | 576.05 | 5.89E+01 | 2.25E+03 | N/A | 2.0E-01 | L | | 76131 | Trichloro-1,2,2-triflouroethane,
1,1,2- | 2.88E-02 | 8.07E-06 | 5.17E-01 | 25 | 1.33E+03 | 320.70 | 481.05 | 2.25E+02 | 4.705.00 | N/A | 3.0E+01 | 0.0E+00 | | 87641 | Acetone | 1.24E-01 | 1.14E-05 | 3.88E-05 | 25 | 6.96E+03 | 329.20 | 508.10 | 5.75E-01 | 1.70E+02
1.00E+06 | N/A | N/A | . | | 75150 | Carbon Disulfide | 1.04E-01 | 1.14E-05
1.29E-05 | 1.27E-02 | 25
25 | 6.39E+03 | 319.00 | 552,00 | | 2.67E+03 | N/A . | 7.0E-01 | | | 79209 | Methyl Acetate | 1.04E-01 | 1.00E-05 | 1.13E-04 | 25 | 1.31E+03 | 365.00 | 547.50 | 5.14E+01
3.32E+00 | 2.43E+05 | #N/A | #N/A | 0.0E+00 | | 75092 | Methylene chloride | 1.01E-01 | 1.17E-05 | 2.19E-03 | 25 | 6.71E+03 | 313.00 | 510.00 | 1.17E+01 | 1.30E+04 | 4.7E-07 | 3.0E+00 | 0.02+00 | | 156605 | trans-1,2-Dichloroethylene | 7.07E-02 | 1.19E-05 | 9.39E-03 | 25 | 1.33E+03 | 320.85 | 516.50 | 5.25E+01 | 6.30E+03 | N/A | 2.0E-01 | | | 1634044 | Methyl-Terliary-Butyl Ether | 1.02E-01 | 1.05E-05 | 5.87E-04 | 25 | 1.32E+03 | 328.36 | 497.11 | 3.84E+01 | 5.10E+04 | N/A | 3.0E+00 | <u>-</u> | | 75343 | 1,1-Dichloroethane | 7.42E-02 | 1.05E-05 | 5.61E-03 | 25 | 6.90E+03 | 330.55 | 523.00 | 3,16E+01 | 5.06E+03 | N/A | 5.0E-01 | <u> </u> | |
156592 | cis-1,2-Dichloroethylene | 7.36E-02 | 1.13E-05 | 4.07E-03 | 25 | 7.19E+03 | 333.65 | 544.00 | 3.55E+01 | 3.50E+03 | N/A | 2.0E-01 | - i | | 78933 | Butanone, 2- (MEK) | 8.08E-02 | 9.80E-06 | 5.60E-05 | 25 | 1.31E+03 | 352.50 | 528.75 | 3.83E+00 | 2.23E+05 | N/A | N/A | 0.0E+00 | | 71556 | 1,1,1-Trichloroethane | 7.80E-02 | 8.80E-06 | 1.72E-02 | 25 | 7.14E+03 | 347.24 | 545.00 | 1.10E+02 | 1.33E+03 | N/A | 2.2E+00 | L | | 110827 | Cyclohexane | 8.00E-02 | 9.00E-06 | 2.00E+00 | 25 | 1.31E+03 | 353.65 | 530.78 | 1.60E+02 | 5.50E+01 | #N/A | #N/A | 0.0E+00 | | 71432 | Benzene | 8.80E-02 | 9.80E-06 | 5.56E-03 | 25 | 7.34E+03 | 353.24 | 562.16 | 5.89E+01 | 1.75E+03 | 7.8E-06 | 3.0€-02 | L | | 79016 | Trichloroethylene | 7.90E-02 | 9.10E-08 | 1.03E-02 | 25 | 7.51E+03 | 360.36 | 544.20 | _1.66E+02 | 1.10E+03 | 1.1E-04 | 4.0E-02 | L | | 108872 | Methyl cyclohexans | 9.86E-02 | 8.52E-06 | 4.23E-01 | 25 | 1.30E+03 | 373.90 | 560,85 | 2.68E+02 | 1.40E+01 | N/A | 3.0E+00 | L | | 108883 | Toluene | 8.70E-02 | 8.60E-06 | 6.63E-03 | 25 | 7.93E+03 | 383.78 | 591.79 | 1.82E+02 | 5.26E+02 | N/A | 4.0E-01 | L | | 127184 | Tetrachloroethylene | 7.20E-02 | 8.20E-06 | 1.84E-02 | 25 | 8.29E+03 | 394.40 | 620.20 | 1.55E+02 | 2.00E+02 | 5.9E-06 | N/A | | | 108907 | Chlorobenzene | 7.30E-02 | 8.70E-06 | 3.71E-03 | 25 | B.41E+03 | 404.87 | 632,40 | 2,19E+02 | 4.72E+02 | N/A | 6.0E-02 | L | | 100414
1330207 | Ethylbenzene | 7.50E-02 | 7.80E-06 | 7.88E-03 | 25 | 8.50E+03 | 409.34 | 617,20 | 3.63E+02 | 1.69E+02 | N/A | 1.0E+00 | | | 100425 | Xylenes | 7.69E-02 | 8.44E-06 | 6.73E-06 | 25 | 1.26E+03 | 417.40 | 616.21 | 2.41E+02 | 2.20E+02 | N/A | 1.0E-01 | L. | | 98828 | Styrene | 7.10E-02
6.50E-02 | 8.00E-06 | 2.76E-03 | 25 | 8.74E+03 | 418.31 | 636.00 | 7.76E+02 | 3.10E+02 | #N/A | #N/A | <u>L</u> | | 79345 | Isopropylbenzene
1,1,2,2-Tetrachloroethane | 7.10E-02 | 7.83E-06
7.90E-06 | 1.47E-02 | 25 | 1.26E+03 | 425.40 | 631.01 | 9.31E+03 | 5.60E+01 | N/A | 4.0E-01 | <u> </u> | | 541731 | Dichforobenzene, 1,3- | 4.14E-02 | 8.85E-06 | 3.44E-04
4.70E-03 | 25
25 | 9.00E+03
1.24E+03 | 419.60
446.00 | 661.15
683.96 | 9.33E+01
1.70E+02 | 2.97E+03
6.88E+01 | #N/A
N/A | #N/A | <u> </u> | | 106467 | 1,4-Dichiorobenzene | 6.90E-02 | 7.90E-06 | 2.43E-03 | 25 | 9.27E+03 | 447.21 | 684.75 | 6.17E+02 | 7.38E+01 | N/A
N/A | 8.0E-01 | S | | 95501 | 1,2-Dichloropenzene | 6.88E-02 | 9.41E-06 | 1.62E-06 | 25 | 9.70E+03 | 465.00 | 697.50 | 5.34E+01 | 2.77E+04 | N/A | N/A | S | | 120821 | 1,2,4-Trichlorobenzene | 3.00E-02 | 8.23E-06 | 1,42E-03 | 25 | 1.05E+04 | 486.15 | 725.00 | 1.78E+03 | 3.00E+02 | N/A | 2.0E-01 | | | 100527 | Benzaldehyde | 7.30E-02 | 9.07E-06 | 2.62E-05 | 25 | 1.24E+03 | 452.00 | 678.00 | 3.27E+01 | 8.57E+03 | #N/A | #N/A | 0.0E+00 | | 91576 | Methylnaphthalene, 2- | 4.84E-02 | 7.75E-06 | 1.01E-03 | 25 | 1.17E+03 | 514.05 | 761.01 | 8.51E+03 | 2.46E+01 | N/A | 3.0E-03 | s | | 92524 | Biphenyl, 1.1'- | 4.04E-02 | 8.15E-06 | 3.03E-04 | 25 | 1.15E+03 | 529.10 | 793.65 | 6.25E+03 | 6.94E+00 | N/A | N/A | 0.0E+00 | | 208968 | Acenaphthylene | 4.43E-02 | 7.44E-06 | 2.80E-04 | 25 | 1.12E+03 | 553.00 | 792.01 | 4.79E+03 | 3.93E+00 | N/A | 3.0E-03 | s | | 83329 | Acenaphthene | 4.21E-02 | 7.69E-06 | 1.55E-04 | 25 | 1.22E+04 | 550.54 | 803.15 | 7,08E+03 | 4.24E+00 | N/A | 3.0E-03 | Š | | 132649 | Dibenzofuran | 2.67E-02 | 5.93E-06 | 4.00E-03 | 25 | 1.11E+03 | 559,00 | 824.01 | 8.13E+03 | 1.00E+01 | N/A | N/A | s | | 86737 | Fluorene | 3.63E-02 | 7.88E-06 | 9.41E-08 | 25 | 1.27E+04 | 570.44 | 870.00 | 7.71E+03 | 1.90E+00 | N/A | 3.0E-03 | š | | 85018 | Phenanthrene | 3.30E-02 | 7.47E-06 | 1.30E-04 | 25 | 1.06E+03 | 613.00 | 869.01 | 1.41E+04 | 1.28E+00 | N/A | 3.0E-03 | s | | 120127 | Anthracene | 3.24E-02 | 7.74E-06 | 6.51E-05 | . 25 | 1.31E+04 | 615.18 | 873.00 | 2.95E+04 | 4.34E-02 | N/A | 3.0E-03 | S | | C5-C8 | C5-C8 Aliphatics | 6.00E-02 | 1.00E-05 | 1.30E+00 | 25 | NA | NA. | NA | 2.27E+03 | 1.10E+04 | N/A | 2.0E-01 | S | | C9-C12 | C9-C12 Aliphatics | 6.00E-02 | 1.00E-05 | 1.56E+00 | 25 | NA | NA | NA | 1.50E+05 | 7.00E+01 | N/A | 2.0E-01 | S | | C9-C10 | C9-C10 Aromatics | 6.00E-02 | 1,00E-05 | 7.92E-03 | 25 | NA | NA | NA | 1.78E+03 | 5.10E+04 | N/A | 5.0E-02 | S | | C9-C18 | C9-C18 Allphatics | 6.00E-02 | 1,00E-05 | 1.66E+00 | 25 | NA | NA | NA | 6.60E+05 | 1.00E+01 | N/A | 2.0E-01 | \$ | | C11-C22 | C11-C22 Aromatics | 6.00E-02 | 1.00E-05 | 7.32E-04 | 25 | NA . | NA | NA | 5.00E+03 | 5.80E+03 | N/A | 5.0E-02 | S | Appendix C, 4 Johnson & Ettinger Model - Data Entry Screen Inhalation of Volleties from Soil Future Commercial Scenario - CT Southwest Propries, Walls G&H Superfund Site, Operable Unit 2 Whitney Barrel | Chechical
CAS No. | | Source-
building
separation, | Vadose zone
soil
sir-filled
pomatty. | Vadose zone
effective
total fluid
saturation, | Vedose zone
soli
intrinsic
permeability, | Vadose zone
soli
relative sir
permesbility, | Vadose zone
sod
effective vapor
permeability, | Floor-
wall
seam
parimeter, | Initial soil
concentration
used, | Bldg.
ventilation
rate. | Area of
enclosed
space
below
grade, | Crack-
to-total
area
ratio. | Crack
depth
below
grade. | Enthalpy of
reportization a
ave. soil
temperature. | constant at ave. soil | Henry's faw
constant at
ave. soil
temperature. | Vepor
viscosity at
ave, soil
temperature. | Vadose
zone
effective
diffusion
coefficient, | |----------------------|--|--|---|--|---|--|--|--------------------------------------|--|-------------------------------|---|--------------------------------------|-----------------------------------|---|-----------------------|---|--|--| | (numbers only, | | LT | θ,ν | S _{in} | k _i | k _{re} | k, | Xcrack | CR | Christma | A | η | Z | ΔH _{v,78} | H _{TS} | нтѕ | ja _{TS} | D ^{ed} , | | no dashes | Chemical | (cm) | (cm³/cm³) | (cm³/cm³) | (cm²) | (cm²) | (cm²) | (cm) | (µg/kg) | (cm³/s) | (cm²) | (unilless) | (cm) | (cel/mol) | (alm-m³/mol) | (unitiess) | (g/cm-a) | (cm²/s) | | 96636 | Trimelhylbenzene, 1,2,4- | 5 | 0.130 | 0.658 | 1.62E-06 | 0.390 | 6.33E-09 | 1.72E+04 | 4.38E+05 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 16 | 1.55E+03 | 4,986-03 | 2.136-01 | 1.75E-04 | 4.77E-04 | | 540590 | Dichloroethylens, 1,2- (total) | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.96E+02 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.73E+03 | 3.87E-04 | 1 67E-02 | 1.75E-04 | 3.77E-04 | | 108878 | Trimethylbenzene, 1,3,5- | 1 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 7.13E+04 | 2.52E+06 | 9.50E+06 | 1,30E-04 | 15 | 1.55E+03 | 6.80E-03 | 2.93E-01 | 1.76E-04 | 3.96E-04 | | 104518 | n-Bulylbenzene | 1 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.038+03 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1,53E+03 | 1.09E-02 | 4.69E-01 | 1.755-04 | 4.41E-04 | | 91203
99876 | Naphthalene | 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 2.74E+03 | 2.62E+08 | 9.50E+06 | 1.30E-04 | 16 | 1.29E+04 | 1.52E-04 | 0.55E-03 | 1.76E-04 | 4.70E-04 | | 135988 | Isopropyticiuene, 4-
Butylbenzene, sec- | 1-1- | 0.130 | 0.859 | 1,62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 7.31E+05 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 16 | 1.57E+03 | 7.48E+00 | 3.22E+02 | 1.76E-04 | 4.39E-04 | | 74873 | Chioromethane | 1 1 | 0.130 | 0.859 | 1.82E-08 | 0.300 | 6,33E-09 | 1.72E+04 | 1.10E+08 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1,53E+03 | 1.48E-02 | 8.27E-01 | 1,75E-04 | 4.88E-04 | | 75014 | Vinyl chioride | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.49E+02 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.20E+03 | 7.79E-03 | 3.35E-01 | 1.76E-04 | 7.66E-04 | | 74839 | Bromomethane | | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1,72E,+04 | 2.61E+02 | 2 52E+06 | 9.50E+08 | 1.30E-04 | 15 | 5.00E+03 | 1,73E-02 | 7.465-01 | 1.75E-04 | 6.44E-04 | | 75003 | Ethyl Chloride | 1 - 1 - | 0.130 | 0.659 | 1.62E-06 | 0.390 | 6,33E-09
6.33E-09 | 1.72E+04
1.72E+04 | 3.69E+06
8.80E+01 | 2.52E+08
2.52E+08 | 9.50E+08 | 1.30E-04
1.30E-04 | 16
15 | 5.39E+03 | 3.64E-03
7.78E-03 | 1.66E-01
3.35E-01 | 1.76E-04
1.75E-04 | 4.48E-04
7.66E-04 | | 75354 | 1,1-Dichloroethylene | 1 - 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 5.33E-09 | 1.72E+04 | 8.34E+01 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1.20E+03
6.39E+03 | 1.47E-02 | 8.34E-01 | 1,75E-04 | 5.47E-04 | | 76131 | Trichloro-1,2,2-Iriflouroelhane, 1,1,2- | 1 | 0.130 | 0.869 | 1.82E-08 | 0.390 | 6.33E-09 | 1.725+04 | 3.99E+05 | 2 52E+08 | 9.50E+08 | 1.30E-04 | 16 | 1.44E+03 | 4.55E-01 | 1.98E+01 | 1.75E-04 | 1.75E-04 | | 67641 | Acetone | 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 3.24E+02 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 16 | 7.58E+03 | 1.97E-05 | 8.50E-04 | 1.75E-04 | 2.07E-03 | | 75150 | Carbon Disulfide | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 5.33E-09 | 1,72E+04 | 8.78E+05 | 2.52E+06 | 9.50€+06 | 1.30E-04 | 15 | 6.68E+03 | 6.99E-03 | 3.01E-01 | 1,75E-04 | 5.34E-04 | | 79209 | Melhyl Acetale | 1 | 0,130 | 0.669 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.03E+07 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1.50E+03 | 9.68E-05 | 4.25E-03 | 1.75E-04 | 8.61E-04 | | 75092 | Melhylene chloride | 1-1- | 0.130 | 0.669 | 1.82E-08 | 0.390 |
6.33E-09 | 1.72E+04 | 7.27E+02 | 2 52E+08 | 9.50E+08 | 1.30E-04 | 15 | 7,03E+03 | 1.17E-03 | 6.03E-02 | 1.75E-04 | 8.35E-04 | | 158605 | trans-1,2-Dichloroethylene | 11 | 0.130 | 0.669 | 1.62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 7.73E+01 | 2,52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1,42E+03 | 8.27E-03 | 3.68E-01 | 1.75E-04 | 4.32E-04 | | 1634044 | Methyl-Tertiery-Butyl Ether | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.75E+01 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1,45E+03 | 5,16E-04 | 2.22E-02 | 1.75E-04 | 8.67E-04 | | 75343 | 1,1-Dichloroethane | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 3.58E+02 | 2.52E+08 | 9.50E+08 | 1.306-04 | 15 | 7,45E+03 | 2,685+03 | 1.24E-01 | 1,75E-04 | 4.58E-04 | | 156592 | cls-1,2-Dichloroethylene | 1 | 0.130 | 0.659 | 1,62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 1.60E+02 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 7.73E+03 | 2.04E-03 | 8.77E-02 | 1.75E-04 | 4.59E-04 | | 76933 | Butanone, 2- (MEK) | 1 | 0.130 | 0.559 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4,53E+07 | 2.52E+06 | 9,50E+06 | 1.30E-04 | 15 | 1.49E+03 | 4.90E-05 | 2.11E-03 | 1.75E-04 | 9.45E-04 | | 71550
110827 | 1,1,1-Trichloroethane | 1 1 | 0.130 | 0,659 | 1.026-00 | 0.390 | 6.33E-09 | 1.72E+04 | 6.01E+05 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 7.88E+03 | 8.50E-03 | 3.66E-01 | 1.75E-04 | 4.75E-04 | | 7143Z | Cyclohexane | ! | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6,93E-09 | 1,72E+04 | 3.88E+05 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1,49E+03 | 1,76E+00 | 7.54E+01 | 1.75E-04 | 4.85E-04 | | 79018 | Benzena
Trichioroethylene | 1 - 1 | 0.130 | 0,659 | 1.82E-08 | 0.390 | 6.33E-0 0 | 1.72E+04 | 8.08E+01 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 8.12E+03 | 2.09E-03 | 1,16E-01 | 1,75E-04 | 5.42E-04 | | 108872 | Methyl cyclohexane | 1 2 | 0.130 | 0.659 | 1.82E-08 | 0.300 | 6,33E-09 | 1.72E+04 | Z.91E+02 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 8.58E+03 | 4 79E-03 | 2.08E-01 | 1.75E-04 | 4.83E-04 | | 108883 | Toluene | 1 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.45E+02 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1.51E+03 | 3.70E-01 | 1.50E+01 | 1.75E-04 | 5,98E-04 | | 127184 | Tetrachionositrylene | + + - | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.85E+02 | 2.52E+08 | 9.50E+00 | 1.30E-04 | 15 | 9.15E+03 | 2.92E-03 | 1.28E-01 | 1.75E-04 | 5,34E-04 | | 106907 | Chlorobenzene | | 0.130 | 0.559 | 1.62E-08 | 0.390 | 6.33E-09
6.33E-09 | 1,72E+04
1,72E+04 | 1.47E+02 | 2.62E+06 | 9.50E+00 | 1.30E-04 | 15 | 9.56E+03 | 7.83E-03 | 3.37E-01 | 1.75E-04 | 4.39E-04 | | 100414 | Ethylpenzene | 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 3.11E+02
1.84E+02 | 2.526+06 | 9.50E+08
9.50E+08 | 1.30E-04 | 15 | 9.60E+03 | 1.54E-03 | 6.65E-02 | 1.75E-04 | 4.56E-04 | | 1330207 | Xylenes | | 0.130 | 0.659 | 1.02E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 1.64E+02 | 2.52E+06 | 9.50E+08 | 1.30E-04
1.30E-04 | 15 | 1,02E+04 | 3.18E-03 | 1.37E-01 | 1.75E-04 | 4,60E-04 | | 100425 | Styrene | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.44E+05 | 2.52E+08
2.52E+08 | 9.50E+08 | | 15
15 | 1.546+03 | 5.88£-05 | 2.52E-04
4.67E-02 | 1.75E-04
1.75E-04 | 3.75€-03
4.47E-04 | | 98828 | Impropylbenzene | 1 1 | 0.130 | 0.669 | 1.52E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.06E+06 | 2.525+06 | 9.50E+08 | 1,30E-04
1,30E-04 | 15 | 1.05E+04
1.54E+03 | 1.08E-03
1.28E-02 | 4.67E-02
5.51E-01 | 1.75E-04 | 3.96E-04 | | 79345 | 1,1,2,2-Tetrachtproethane | 1 1 | 0.130 | 0.659 | 1.826-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.15E+08 | 2.52E+06 | 9.50E+06 | 1,30E-04 | 15 | 1.05E+04 | 1.34E-04 | 5.77E-03 | 1.75E-04 | 5.65E-04 | | 641731 | Dichlorobenzana, 1,3- | 1 | 0.130 | 0.659 | 1.82E-08 | D 390 | 6.33E-09 | 1.72E+04 | 1.00E+02 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.50E+03 | 4 11E-03 | 1.77E-01 | 1.756-04 | 2.58E-04 | | 106487 | 1,4-Dichlorobenzane | L 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.60E+02 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1,12E+04 | 8.69E-04 | 3.83E-02 | 1.75E-04 | 4 38F-04 | | 96501 | 1,2-Dichlorobenzene | 1 7 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 5.10E+01 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1.21E+04 | 6.51E-07 | 2.37E-05 | 1.75E-04 | 3.94E-02 | | 120821 | 1,2,4-Trichiorobenzene | 1 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.726+04 | 1.13E+06 | 2.525+06 | 9.50E+05 | 1.30E-04 | 15 | 1,32E+04 | 4.35E-04 | 1.87E-02 | 1.75E-04 | 2.26E-04 | | 100527 | Flenzaldehyde | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.74E+06 | 2.52E+06 | 9.50E+06 | | 15 | 1.53E+03 | 2.29E-05 | 9.64E-04 | 1.75E-04 | 1.36E-03 | | 91576 | Melhylnaphihalene, 2- | 1 | 0.130 | 0.659 | 1.62E-98 | 0,390 | 6.33E-09 | 1.72E+04 | 5.416+03 | 2.52E+06 | 9.50E+08 | 1,30E-04 | 15 | 1,61E+03 | | 3,61E-02 | 1.75E-04 | 3.13E-04 | | 92524 | Bipheryl, 1,1'- | 11 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 8.81E+04 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1,47E+03 | 2.66E-04 | 1.14E-02 | 1,75E-04 | 3.15E-04 | | 208988 | Acenaphlhylene | | 0.130 | 0.659 | 1.826-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.00E+02 | 2.525+08 | 9.50E+08 | 1.30E-04 | 15 | 1.616+03 | 2.45E-04 | 1.05E-02 | 1.75E-04 | 3.36E-04 | | 63329 | Acenaphihene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 6.09E+04 | 2.52E+06 | 9.50E+08 | | . 15 | 1,81E+04 | 3.67E-05 | 1.58E-03 | 1.76E-04 | 7.33E-04 | | 132649
96737 | Dibenzofuran | 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 1.79E+03 | 2.52E+08 | 9.50E+05 | | 15 | 1,47E+03 | 3.51E-03 | 1.615-01 | 1.75E-04 | 1.88E-04 | | 85018 | Fluorene | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.97E+04 | 2.52E+08 | 9.50E+08 | 1.306-04 | 15 | 1.02E+04 | 2.20E-08 | 9.48E-07 | 1,75E-04 | 8,16E-01 | | 120127 | Phenanthrene
Anthracene | | 0.130 | 0.659 | 1.626-08 | 0.390 | 6.33E-09 | 1.72E+04 | 3.64E+04 | 2,52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1.48E+03 | 1.14E-04 | 4.90E-03 | 1.75E-04 | 3.50E-04 | | C5-C8 | C5-C8 Aliphatics | | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.726+04 | 2.57E+Q3 | 2,52E+06 | 9,50E+06 | 1.30E-04 | 15 | 1.84E+04 | 1.28E-05 | 5.43E-04 | 1,75E-04 | 1.60€-03 | | C9-C12 | C9-C12 Aliphatics | 1 -1 -1 | 0.130 | 0.659 | 1.52E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 0.83E+04 | 2.52E+06 | 9.50E+08 | | 15 | . NA | 0.48E-01 | 2.79E+01 | 1.75E-04 | 3.84E-04 | | C9-C10 | C9-C10 Aromatics | 1 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1,72E+04 | 6.11E+04 | 2.52E+06 | 9.50E+06 | | 15 | NA NA | 7.80E-01 | 3.38E+01 | 1.75E-04 | 3.64E-04 | | C9-C18 | C9-C18 Aliphatics | + | 0.130 | 0.659 | 1.62E-08 | 0,390 | 6.33E-09 | 1.72E+04 | 4.31E+05 | 2.52E+08 | 9.50E+08 | 1,30E-04 | 15 | NA_ | 1,95E-03 | 1,70€-01 | 1,76E-04 | 3.69E-04 | | C11-C22 | C11-C22 Aromatica | | 0.130 | 0.659 | 1.62E-08
1.62E-08 | 0,390
0,390 | 6.33E-09 | 1.72E+04 | 9.25E+05 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | NA. | 8.28E-01 | 3,55E+01 | 1.75E-04 | 3.64E-04 | | | 10.1. of the United States | <u> </u> | 1 | L COOM | 1.045-00 | U, JYU | 6.33E-09 | 1.72E+04 | 9.24E+05 | 2.525+06 | 9.50E+08 | 1.30E-04 | 15 | NA NA | J.60E-04 | 1.65E-02 | 1.75E-04 | 4.27E-04 | Appendix C.4 Johnson & Ellinger Model - Dista Entry Screen Inhalation of Votetiles from Soil Future Commercial Scenario - CT Southwest Prperties, Walls G&H Superfund Sha, Operable Whitney Barnel | | | Diffusion | Convection | Soll-water | 0-4 | | Average | Crack | | Exponent of
equivalent | infinite
source | infinite | | | |----------------|---|---------------------------------------|------------|----------------------|----------------------|--------------------|----------------------|------------------------|----------------------|---------------------------|-----------------------|----------------------|--------------|--------------------| | Chemical | | path | path | partition | Source
Vapor | Crack | vapor
flow rate | effective
diffusion | Area of | foundation
Pedel | indoor
attenuation | source
bidg. | Unit
risk | Reference | | CAS No. | | length, | length. | coefficient. | conc | radius. | nio bidg., | coefficient. | crack. | number. | coefficient. | conc. | factor. | CORG | | (numbers only, | | ŭ | Ļ | K. | C | T _{rench} | O _{ecal} | O _{merk} | Aona | eυφ(Pef) | α | Chang | URF | RIC | | no dashea) | Chemical | (cm) | (cm) | (cm³/g) | (µg/m³) | (cm) | (cm ³ /a) | (cm²/x) | (cm²) | (unitleas) | (unilleas) | (μg/m³) | (mm/m³)* | (mg/m³) | | 95838 | | | | | | | | | | ···· | | | | | | 540590 | Trimethylbenzene, 1,2,4- Dichlorpethylene, 1,2- (total) | 1 | 15
15 | 7.43E+00
2.57E-01 | N/A
N/A | 0.10 | 2.74E+01
2.74E+01 | 4.77E-04 | 1.23E+03 | 2.75E+309 | 1.08E-05
1.08E-05 | N/A | N/A | 6.0€-03 | | 106678 | Trimethylbenzene, 1,3,5- | 1 | 15 | 3.34E+00 | N/A | 0.10 | 2.74E+01 | 3,77E-04
3,95E-04 | 1.23E+03 | #NUM
#NUM | | N/A
N/A | #N/A | #N/A | | 104518 | n-Butylbenzene | | 15 | 6.02E+00 | N/A | 0.10 | 2.74E+01 | 4,41E-04 | 1,23E+03
1,23E+03 | #NUM | 1.08E-05
1.08E-06 | N/A | N/A
MN/A | 6.0E-03 | | 91203 | Naphthalene | - | 15 | 4.00E+00 | 4.27E+03 | 0.10 | 2.74E+01 | 4.70E-04 | 1.23E+03 | 9.67E+307 | 1.08E-05 | 4.61E-02 | N/A | 3.0€-03 | | 99876 | /sopropyliciuene, 4- | 1 " | 15 | 3.16E+00 | N/A | 0.10 | 2.74E+01 | 4.39E-04 | 1.23E+03 | NUM | 1.08E-06 | N/A | N/A | 4.0E-01 | | 135985 | Butylbenzene, sec- | 1 | 15 | 6.22E+01 | N/A | 0.10 | 2.74E+01 | 4.86E-04 | 1.23E+03 | 5,47E+297 | 1.08E-06 | N/A | #N/A | #N/A | | 74873 | Chloromethane | 1 | 15 | 2.88E-02 | 3.24E+06 | 0.10 | 2.74E+01 | 7.88E-04 | 1.23E+03 | 1.14E+189 | 1.08E-05 | 3.51E+00 | N/A | 9.0E-02 | | 75014 | Vinyl chloride | 1 | 15 | 3.72E-02 | 6.46E+05 | 0.10 | 2.74E+01 | 5.44E-04 | 1.23E+03 | 5.27E+224 | 1.08E-05 | 8.99E+00 | 8.8E-08 | 1.0E-01 | | 74839 | Bromomethane | 1 | 15 | 2.86€-02 | N/A | 0.10 | 2.74E+01 | 4.48E-04 |
1.23E+03 | #NUMI | 1.08E-05 | N/A | N/A | 5.0E-03 | | 75003 | Ethyl Chiorida | 1 | 15 | 2.88E-02 | 1.12E+05 | 0.10 | 2.74E+01 | 7.86E-04 | 1.23E+03 | 1.14E+160 | 1.08E-05 | 1,21E+00 | N/A | 1.0E+01 | | 76364 | 1,1-Dichloroethylene | 1 | 15 | 1.18E-01 | 1.08E+05 | 0.10 | 2.74E+01 | 5.47E-04 | 1.23E+03 | 3.82E+284 | 1.08E-05 | 1.17E+00 | N/A | 2.0E-01 | | 78131
67641 | Trichloro-1,2,2-triflouroethane, 1,1,2- | 1 | 15 | 4.50E-01 | N/A | 0.10 | 2.74E+01 | 1.75E-04 | 1.23E+03 | #NUMI | 1.07E-05 | N/A | N/A | 3.0E+01 | | 76160 | Acetone
Carbon Disulfide | | 15 | 1.156-03 | 1,37E+03 | 0.10 | 2.74E+01 | 2.07E-03 | 1.23E+03 | 9.18E+69 | 1.09E-05 | 1.48E-02 | N/A | N/A | | 79209 | | · · · · · · · · · · · · · · · · · · · | 15 | 1.03E-01 | N/A | 0.10 | 2.74E+01 | 6.34E-04 | 1.23E+03 | 1.25E+228 | 1,08E-05 | N/A_ | N/A | 7.0E-01 | | 75092 | Methyl Acelate
Methylene chloride | 1 | 15 | 6.64E-03
2.34E-02 | N/A | 0.10 | 2.74E+01 | 8.61E-04 | 1,23E+03 | 1.17E+166 | 1,08£-06 | N/A | #N/A | #N/A | | 156805 | Irana-1,2-Dichloroethytene | 1 | 15 | 1.05E-01 | 1,60E+05
8.20E+04 | 0.10 | 2.74E+01
2.74E+01 | 6.35E-04 | 1.23E+03 | 8,55E+227 | 1.08E-05 | 1.73E+00 | 4.7E-07 | 3.0E+00 | | 1834044 | Methyl-Tertiary-Butyl Ether | 1 | 15 | 7.68E-02 | 4.58E+03 | 0.10 | 2.74E+01 | 4.32E-04
6.67E-04 | 1,23E+03
1,23E+03 | #NUMI
9.48E+216 | 1.08E-05
1.08E-05 | 8.85E-01
4.96E-02 | N/A | 2.06-01 | | 76343 | 1,1-Dichloroethane | | 15 | 6.32E-02 | 1.62E+05 | 0,10 | 2.74E+01 | 4.58E-04 | 1.23E+03 | #NUMI | 1.08E-05 | 1.76E+00 | N/A
N/A | 3.0E+00
5.0€-01 | | 156592 | cls-1,2-Dichloroethylene | 1 | 15 | 7.10E-02 | 5,66E+04 | 0.10 | 2.74E+01 | 4.59E-04 | 1,23£+03 | PNUMI | 1.08E-05 | 8.12E-01 | N/A | 2.0E-01 | | 78933 | Butanone, 2- (MEK) | i | 15 | 7.66E-03 | N/A | 0.10 | 2.74E+01 | 9.45E-04 | 1,23E+03 | 1.18E+153 | 1.08E-05 | N/A | N/A | N/A | | 71566 | 1.1.1-Trichloroethane | 1 | 15 | 2.20E-01 | N/A | 0.10 | 2.74E+01 | 4.75E-04 | 1.23E+03 | 4.36E+304 | 1.08E-05 | N/A | N/A | 2.2E+00 | | 110627 | Cyclohexane | 1 | 15 | 3.20E-01 | N/A | 0.10 | 2.74E+01 | 4.85E-04 | 1,23E+03 | 3.18E+298 | 1.08E-05 | N/A | #N/A | #N/A | | 71432 | Benzene | 1 | 15 | 1.10E-01 | 2.85E+04 | 0.10 | 2.74E+01 | 5.42E-04 | 1.23E+03 | 1.61E+267 | 1.08E-05 | 3.08E-01 | 7.5E-05 | 3.0E-02 | | 79016 | Trichlomethylene | 1 | 15 | 3.32E-01 | 1.09E+05 | 0,10 | 2.74E+01 | 4.83E-04 | 1.23E+03 | 3.77E+299 | 1.08E-05 | 1.18E+00 | 1.1E-04 | 4.0€-02 | | 108872 | Methyl cyclohexane | 1 | 15 | 5.38E-01 | 3.35E+06 | 0.10 | 2.74E+01 | 5.08E-04 | 1.23E+08 | 1.50E+242 | 1.08E-05 | 3.62E+01 | N/A | 3.0€+00 | | 108883 | Toluene | | 15 | 3.64E-01 | 1.285+05 | 0.10 | 2.74E+01 | 5.34E-04 | 1,23E+03 | 1.10E+271 | 1.08E-05 | 1.39E+00 | N/A | 4.0E-01 | | 127184 | Tetrachloroethylene | 1 | 15 | 3.10E-01 | 9.19E+04 | 0.10 | 2.74E+01 | 4.39E-04 | 1.23E+03 | #NUM! | 1.08E-05 | 8.92E+01 | 5.9E-06 | N/A | | 108907 | Chlorobenzene | 1 | 15 | 4.38E-01 | 3.21E+04 | 0.10 | 2.74E+01 | 4.55E-04 | 1.23E+03 | WNUM | 1.08£-05 | 3.46E-01 | N/A. | 6.0E-02 | | 100414 | Ethylbenzene | 1 | 15 | 7.26E-01 | 2.68E+04 | 0.10 | 2.74E+01 | 4,60E-04 | 1.23E+03 | PNLIMI | 1.085-05 | 2.90E-01 | N/A | 1.0E+00 | | 1330207 | Xylenes | 1 | 15 | 4.82E-01 | N/A | 0.10 | 2.74E+01 | 3,75E-03 | 1.23E+03 | 4.03E+38 | 1.09E-05 | N/A | N/A | 1.0E-01 | | 98828 | Styrene | | 15 | 1,55E+00 | N/A | 0.10 | 2.74E+01 | 4.47E-04 | 1.23E+03 | #NUMI | 1.08E-05 | N/A | #N/A | ANVA | | 76345 | lacpropylbenzene 1,1,2,2-Tetrachiproethane | | 16 | 1.86E+01 | N/A | 0,10 | Z.74E+01 | 3.85E-04 | 1.23E+09 | #NUM | 1.08E-05 | N/A | N/A | 4.0E-01 | | 541731 | Dichiorobenzene, 1,3- | | 15 | 1.87E-01
3.40E-01 | N/A
3.19E+04 | 0.10 | 2.74E+01
2.74E+01 | 5.65E-04 | 1.23E+03 | 1,96E+256 | 1.08E-05 | N/A | #N/A | #N/A | | 106467 | 1,4-Dichlorobenzene | | 15 | 1.235+00 | 5.50E+03 | 0.10 | 2.74E+01 | 2,58E-04 | 1.23E+03 | PNUMI | 1.07E-06 | 3.42E-01 | N/A | N/A | | 96601 | 1,2-Dichlorobenzene | | 15 | 1.076-01 | 3.94E+00 | 0.10 | 2.74E+01 | 4.38E-04
3.94E-02 | 1.23E+03
1.23E+03 | #NUM!
4.74E+09 | 1.08E-05
1.09E-05 | 7.196-02
4.286-05 | N/A
N/A | 8.0E-01
N/A | | 120821 | 1,2,4-Trichlorobenzene | | 15 | 3.58E+00 | N/A | 0.10 | 2.74E+01 | 2.25E-04 | 1.23E+03 | #NUM! | 1.07E-05 | N/A | N/A | 2.0E-01 | | 100527 | Benzaldehyde | - 1 | 16 | 8.54E-02 | N/A | 0.10 | 2.74E+01 | 1,36E-03 | 1.23E+03 | 2.60E+107 | 1.08E-05 | N/A | #N/A | *N/A | | 91576 | Methylnaphthaiene, 2- | 1 | 16 | 1.70E+01 | 1,20E+04 | 0.10 | 2.74E+01 | 3.13E-04 | 1.23E+03 | WNUM | 1.08E-05 | 1,29E-01 | N/A | 3.0€-03 | | 92524 | Biphenyl, 5,1'- | 1 | 15 | 1.25E+01 | N/A | 0.10 | 2.74E+01 | 3.15E-04 | 1,23E±03 | WNUM! | 1.08E-05 | N/A | N/A | N/A | | 208958 | Acenephthylene | 1 | 15 | 9.57E+00 | 4.31E+02 | 0.10 | 2.746+01 | 3,38E-04 | 1,23E+03 | #NUN# | 1.08E-05 | 4.64E-03 | N/A | 3.0€-09 | | 83329 | Acenaphthene | 1 | 15 | 1.42E+01 | N/A | 0.10 | 2.74E+01 | 7.33E-04 | 1.23E+03 | 2.13E+197 | 1.08E-05 | N/A | N/A | 3.0E-03 | | 132649 | Dibenzofuran | 1 | 15 | 1.63E+01 | 1.64E+04 | 0.10 | 2.74E+01 | 1.68E-04 | 1,23E+03 | #NUM | 1.07E-05 | 1.75E-01 | N/A | _N/A | | 86737 | Fluorene | 11 | 16 | 1.54E+01 | N/A | 0.10 | 2.74E+01 | 8.18E-01 | 1,23E+03 | 1.50E+00 | 3.24E-05 | N/A | N/A | 3.0€-03 | | 85018 | Phenanthrane | 11 | 16 | 2.63E+01 | 6.27E+03 | 0.10 | 2.74E+01 | 3,50E-04 | 1.23E+03 | MUNA | 1.08E-05 | 6.76E-02 | N/A | 3.0E-03 | | 120127 | Anthrecens | 1 | 15 | 5.90E+01 | N/A | 0.10 | 2.74E+01 | 1.60E-03 | 1,23E+03 | 5.14E+90 | 1.08E-05 | N/A | N/A | 3.0E-03 | | C5-C8 | C5-C8 Aliphatics | · · · · · · | 15 | 4.53E+00 | 3.84E+08 | 0.10 | 2.74E+01 | 3.64E-04 | 1.235+03 | #NUM# | 1.08E-05 | 4.14E+03 | N/A | 2.0E-01 | | C9-C12 | C9-C12 Aliphatics | 1 | 15 | 3 00E+02 | 6.76E+06 | 0.10 | 2.74E+01 | 3.84E-04 | 1.23E+03 | PNUM | 1.08E-05 | 7.29E+01 | N/A | 2.0E-01 | | C9-C10 | C9-C10 Aromatics | | 15 | 3.58E+00 | 1.95E+07 | 0.10 | 2.74E+01 | 3.69E-04 | 1.235+03 | #NUMI | 1.086-05 | 2.10E+02 | N/A | 5.0E-02 | | C9-C18 | C9-C15 Aliphatica | | 15 | 1.38E+03 | 2.42E+07 | 0.10 | _2,74E+01 | 3.64E-04 | 1.23E+03 | #NUM! | 1.08E-05 | 2.616+02 | N/A | 2.0E-01 | | C11-C22 | C11-C22 Aromatica | . 1 | . 16 | 1,00€+01 | 1.40E+06 | 0.10 | 2.74E+01 | 4.27E-04 | 1.23E+03 | #NUM | 1.08E-05 | 1.51E+01 | N/A | 5.0E-02 | #### RESULTS SHEET Appendix C-4 Johnson & Edinger Model - Dete Entry Screen Inhibition of Valables from Soli Fubris Commercial Scenario - CT Southwest Preprint, Walte G&H Superfyed Site, Operable Unit 2 Winters Remail #### RISK-BASED SOIL CONCENTRATION CALCULATIONS: #### INCREMENTAL RISK CALCULATIONS: | Chemical
CAS No.
(numbers only,
no deshes) | Chamical | Indoor
exposure
soil
conc.,
carcinogen
(µg/kg) | Indoor
espacine
eoil
conc.,
poscercinogen
(µg/kg) | Flick-besed
Indoor
exposure
soil
cond,
(µg/kg) | Scd
eaturation
conc.,
C _{ssc}
(µg/kg) | Final
indoor
exposurs
soil
conc.,
(µp/kg) | Incremental risk from Vecor Insulation to Indoor six. cardinogen (unities y) | Hazard quotient from yearor intrusion to indoor air. soncarcinogen (unifiess) | |---|---|---|--|---|--|--|--|---| | 95636 | Trimethylpenzene, 1.2,4- | NA | NA I | NA. | 4,34E+05 | NA I | NA | NA. | | 540590 | Dichioroethylene, 1,2- (total) | NA | NA NA | HA | 5.98E+02 | NA | HA | NA | | 108878 | Trimetrythenzene, 1,3,5- | NA NA | , NA | NA NA | 7.13E+04 | NA | NA | NA | | 104518 | n-Butebenzene | NA | ¥ | NA | 6.63E+03 | NA | NA. | NA. | | 91203 | Nachthalene | NA NA | NA. | NA. | 1,30E+05 | NA. | NA. | 3,1E-03 | | 99676 | Isopropylickiene, 4- | NA. | NA. | NA | 7.21E+05 | NA | NA
NA | NA
NA | | 135988 | Butylbenzene, sec- | NA. | NA. | NA. | 1.10E+06 | NA . | | 7.8E-Q3 | | 74873 | Chloromethane | NA | NA NA | NA. | 1,37E+06 | NA
NA | NA
1.6E-06 | 1,46-02 | | 75014
74839 | Vinyl chloride
Bromomethane | NA
NA | NA
NA | NA
NA | 8.33E+05 | NA. | 1.0E-00 | NA
NA | | 75003 | Ethyl Chloride | NA. | NA. | NA. | 3.09E+05 | NA. | NA. | 2.4E-05 | | 75354 | 1.1-Dichlorpethylene | NA | NA NA | | 8 39E+05 | NA NA | NA. | 1.2E-03 | | 76131 | Trichioro-1,2,2-triflourosthane, 1,1,2- | NA NA | NA NA | - NA | 3.99E+05 | HA. | NA NA | NA NA | | 57541 | Acetone | NA. | NA NA | - NA | 2.01E+08 | - NA | NA NA | NA. | | 75150 | Carbon Disuffide | NA NA | NA NA | NA NA | 8.78E+05 | - NA | - NA | NA. | | 79209 | Methyl Acetate | NA | NA NA | NA NA | 5.03E+07 | HA | NA. | NA. | | 75092 | Methylene chicride | NA. | NA NA | NA NA | 2.96E+06 | NA. | 2.1E-08 | 1.2E-04 | | 156605 | trens-1.2-Dichloroethylene | NA NA | NA NA | NA. | 2.12E+08 | NA ··· | NA NA | 6 8F-04 | | 1634044 | Methyl-Tertleny-Butyl Ether | NA | NA NA | NA. | 1 42E+07 | NA. | NA. | 3.3E-06 | | 75343 | 1.1-Dichlorpethane | NA | NA. | NA NA | 1.39E+08 | NA. | NA. | 7.0E-04 | | 158592 | cis-1.2-Dichloroethylene | NA NA | NA. | NA NA | 9.75E+05 | NA | NA NA | 6.1E-04 | | 78933 | Butenone, 2- (MEK) | NA. | NA | NA. | 4.63E+07 | NA. | NA. | HA | | 71556 | 1.1.1-Trichloroethene | NA. | NA. | NA. | 6.01E+05 | NA NA | NA NA | HA | | 110827 | Cyclohesane | NA. | NA. | NA | 3.66E+05 | NA. | NA NA | HA | | 71432 | Benzene | NA. | NA. | NA | 5.74E+05 | NA | 6.25-08 | 2.16-03 | | 79016 | Trichiorpethylene | NA | NA | NA | 8.05E+05 | NA | 3.3E-06 | 5.9E-03 | | 106872 | Mattryl cyclohecene | NA. | NA. | NA. | 2,968-04 | . NA | NA | 2.4E-03 | | 108883 | Toluene | NA | HA | NA | 3.026+05 | NA
 NA | 6 DE-04 | | 127164 | Telt schiorostrylene | NA | NA | NA | 1,062,+05 | N | 1,58-07 | NA. | | 108907 | Chlorobenzene | NA | NA | NA. | 3.045+05 | NA. | NA | 1.2E-03 | | 100414 | Elit/Ibercome | NA | NA | NA. | 1.582+05 | NA. | - NA | 5.66-05 | | 1330207 | Xylanes | NA. | HA | NA . | 1.50E+05 | ··· NA | NA. | NA NA | | 100425 | Shrana | NA. | NA . | NA | _5.44E+05 | NA | NA. | HA. | | 98828 | leopropylbenzene | HA | NA. | HA | 1.06E+06 | NA NA | NA. | NA | | 79345 | 1.1,2.2-Teirachkroethave | NA | NA . | NA. | 1.15E+06 | NA. | NA | NA. | | 541731 | Dichlorobenzene, 1.3- | HA | HA | NA. | 3.82E+04 | N/A | "NA | NA NA | | 105467 | 1.4-Okthorobenzene | HA | NA. | NA . | 1.06E+05 | NA | NA. | 1.82-05 | | 95501 | 1.2-Dichlorobenzerre | NA. | NA. | NA. | 6.50E+08 | NA. | NA. | NA NA | | 120621 | 1.2,4-Trichlorobenzene | NA. | HA. | NA. | 1,13E+06 | NA | NA
NA | | | 100527
91576 | Benzaklehide | HA. | NA
NA | NA. | 1,745+06 | NA. | NA. | B.SE-C3 | | | Methylnaphthalene, 2- | | | | 4.24E+05 | NA | NA
NA | NA NA | | 92524
208968 | Sichenyl, 1,1'-
Acenaphthylene | HA. | NA NA | NA. | 8.815+04 | NA
NA | HA. | 3.1E-04 | | 83329 | Acenachthone | NA. | NA NA | NA NA | 3,84E+04
6,09E+04 | NA. | HA | NA
NA | | 132649 | Adenastrene
Disenzoturan | HA. | NA NA | HA HA | 1.05E+05 | NA. | - ₩ | NA NA | | 86737 | Fluoren | NA. | NA NA | NA
NA | 2.97E+04 | NA
NA | NA NA | NA. | | 85018 | Phonon hyene | NA NA | NA NA | | 3.64E+04 | NA. | - 122 - | 4.5E-03 | | 520127 | Aribrarana | NA. | NA NA | NA NA | 2.57E+03 | NA. | NA NA | NA
NA | | G5-C8 | CS-C8 Allehatica | NA NA | NA NA | NA. | 7.86E+07 | - NA | NA. | 4.1E+00 | | C9-C12 | C9-C12 Aliebatica | 17. | NA | | 2 12E-07 | NA | NA. | 7,35-02 | | CB-C10 | G9-C10 Aromatics | HA. | NA
NA | NA NA | 1.925+00 | NA. | NA. | 8.4E-01 | | C9-C18 | C9-C16 Alghatics | NA T | | | 1 38E+07 | HA | · · · · · · · · · · · · · · · · · · · | 2,65-01 | | Annah 14 | C11-GZZ Arometics | NA. | NA. | NA NA | 5.92E+07 | NA. | NA. | 6.1E-02 | 95% UCL Canoer 95% UCL Risk HI YOTAL: 56-06 5.4E+00 > = Canoar risk > 1E-05 or HQ/HI>1E+00 Trimethylberuzwe, 1,2-4 Dichlorostriviews, 1,2-1 (bidd) Trimethylberuzwe, 1,2-1 (bidd) Trimethylberuzwe, 1,2-1 (bidd) Trimethylberuzwe, 1,2-5 McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC addutated at Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC addutated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC addutated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC addutated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC addutated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC addutated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, >= saturation (Ceat), Rais/MC calculated of Ceat, McSSAQE: Soil conc, Jehrand C 4 Johnson & Elthour Model - Deta Entry Screen Inhulation of Wolafee from 5of Future Charle Recryational Science - Place Southwater Princeton, Wells G&H Supportund See, Operable Unit 2 Windows Samel CALCULATE RISK BASED SOIL CONCENTRATION (www "7" in "YES" box) SL-SCREEN Version 2.3; 03/01 YES ____ ALCULATE SICREMENTAL RISKS FROM ACTUAL SOIL CONCENTRATION forter "A" in "YES" but and infinal east come, before YES X | | VER X |---|--------------------------------------|---|-----------------------|--|---------------|-------------------|---|--------------|--------------|----------------|---------------------|-------------|--------------|------------------|-----------------------|-----------|---------------|-------------------------|--| | | | | | | | | | | • | | | | | | | | | | | | | Enter initial acti con | स्टब्स्स् (कविद्याः | ENTER | ENTER | ENTER; | ENTER | ENTER | | | | | | | | | | | | | | ENTER | | ENTER | Decth
below drade | | | Vadore zone | User-defined | ENTER | EMIER | | Man | to bottom | Ceoth below | Average | 8G8 | vedone 20ne | Vagose zone | Vadane zane | Vadose zone | Увекции доли | Averaging | Average | | | | | Terost | Terrial hazard | | Chattical | | ec# | of project | grade to loo | açã | and type | adi vacor | क्यों केर | 무게 (너희 | dig minist and | acti ordanic | trine for | Hine for | Exposure . | Exposure
Inscuence | Exposure | Coversion | rink for
opportunity | cuatient for
experiencement. | | CAS No. | | work., | apace Book | of consumination. | terropreture. | fused to settmete | он петерущу. | bulk denetik | COLOGEN' | paranity. | carbon medion. | androwe. | ATNE | ED: | EF . | ET | C.P | THE | THO | | (numbers crey, | | CR | L. | Ŀ | 7. | eag vector | к, | 6. | | | 4 | ATC. | - | | | - | - | | | | 00 (dealther) | Chemical | (s-g-leg) | (15 to 200 cm) | (0m) | <u>(%)</u> | Dermeebility) | Philips (com ²) | (g/tsm²) | (profilesy) | (cm³/cm³) | (unitinds) | <u></u> | (Arts) | (v19) | (de ='\r') | (ALP/DEN) | (hre/yr) | (VOIGES) | (unktens) | | | | | | | | | | | | | | 70 | | - | 70 | 2.5 | 8760 | 1.05-00 | T | | 19434 | Trimethylbenzene, 1,2,4- | | 1.5 | 15 | 10 | L5 | 1 | 1.5 | 0.43 | 0.3 | 0.002 | 70 | · · · · · · | | 78 | 2.5 | 6760
A760 | 1.0E-06 | ; - | | 540500 | Dichlorosthylene, 1,2- (total) | | 15 | 16 | 30 | LS | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | - : | B | 78 | 2.5 | 8760 | 1.0E-08 | | | 190673 | Trimethylbenzene, 1,3,5- | | tô | 15 | 10 | L8 | 1 | | 0.43 | 0.3 | 0.002 | | - 6 | 8 | 76 | 2.5 | 6760 | 1.0E-06 | | | 104818 | n-Butylhengane | 1 1 | 15 | 15 | 10 | Ls | 1 | 1.5 | 0.43 | 0.3 | 0.002 | 70 | | - ; - | 78 | 2.5 | 5780 | 1.0E-09 | + | | \$1300. | Naphihalene | 2.74E+03 | 15 | 15 | 10 | L8 | 1 | 1.5 | 0.43 | 0.3 | 0.002 | 70 | | | 78 | 2.5 | 8780 | 1.0E-06 | ; | | 10175 | leopropytokene, 4- | | 15 | 16 | 10 | 1.5 | 1 | 1.5 | 0 43 | 0.3 | 0.002 | | <u></u> | - 6 | 76 | 2.5 | 8760 | 1.06-08 | + | | 130000 | Butylbenzene, eec- | | 16 | 15 | 10 | L8 | 1 | 1.0 | 0.43 | 0.5 | 0.002 | 70 | | | 76 | 2.5 | 8780 | 1.06-00 | + + - | | 74673 | Chlorometiume | 2.49E+02 | 15 | 15 | 10 | L5 | 1 | 1.5 | 043 | 0.3 | 0.002 | 70 | | - 6 | 78 | 2.3 | 8760 | 1.05-08 | | | 79014 | Vlnyl chlorida | 2.61E+02 | 16 | 15 | 10 | LB | 1 | 1.8 | 0.43 | 0.5 | 0.002 | | | | | | | 1 0E-08 | | | 74428 | Bromomethane | | 16 | 15 | 10 | LB | 1 | 15 | 0.43 | 0.3 | 0.002 | 70 | 6 | • | 78 | 2.5 | 8760 | 1 05-08 | | | 7000 | Ethyl Chloride | 6.00E+01 | 15 | 15 | 10 | LB | 1 | 1.6 | 0.43 | 0.5 | 0.002 | 70 | | * | 78 | 2.5 | B760 | 1.0E-08 | | | 78384 | 1,1-Olchioroethylene | 1.20E+02 | 15 | 15 | 10 | LS | 1 | 1.5 | 0.43 | 03 | 0.902 | 70 | | * | 78 | 2.5 | 8760
6760 | 1.06-06 | | | 76131 | Trichloro 1.2.2-trificumentana 1.12- | | 15 | 15 | 10 | 18 | | 1.5 | 0.43
0.43 | 03 | 0 002 | <u>70</u> | | - 6 | 76 | 2.5 | 8760 | 1.06-06 | | | 67941 | Acetone | 3.24€+02 | 15 | 10 | 10 | LB | 1 | | | | | 70 | - 6 | | 78 | 26 | 8760 | 1.0E-06 | + + 1 | | 79186 | Carbon Disuffide | | 15 | 15 | 10 | Le . | | 1.6 | 0.43 | 0,3 | 0 002 | 70 | | - | 78 | 2.5 | 8760 | 1.0E-06 | | | 79300 | Methyl Acetals | | 19 | 15 | 10 | LS. | 1 | 1.6 | 0.43 | 0.3 | 0 002 | 70 | | • | 78 | 25 | 6760 | 1.0E-06 | - | | 79000 | Methylene chloride | 7.27E+02 | 18 | 15 | 10 | Lib. | 1 | | 0.43 | 0.3 | | 70 | | - | 78 | 26 | 6780 | 1.0E-06 | + + + | | ****** | trans-1,2-Dichlorosthylene | 7.73E+01 | 18 | 18 | 10 | 1.6 | 1 | 1.6 | 0.43 | 0.3 | 0.002 | 70 | • | | 78 | 25 | 8760 | 1.0E-08 | | | 1634044 | Methyl-Tertary-Butyl Ether | 6.75E+01 | 18 | 15 | 10 | LB | 1 | | 0.43 | 0.3 | 0.002 | 70 | ····· | | 78 | 2.5 | 8750 | 1.0E-06 | | | 76341 | 1,5-Dichloroethane | 3.56E+02 | 16 | 18 | 10 | Lis Lis | 1 | 1.5 | 0.43 | 0.3 | 0.002 | 70 | , | 8 | ———— | 2.5 | 8/60 | 1.0E-96 | + + | | 19462 | cia-1,2-Dichloroethylene | 1.80E-02 | 16 | 16 | 10 | LB | 1 | 1.6 | 0.41 | 0.3 | 0.022 | 10 | | | 78 | 2.5 | 8780 | 1.0E-06 | - | | 78613 | Butanone, 2- (MEK) | 1 | 16 | 16 | 10 | LS. | | 1.5 | 0.43 | 0.3 | 0,002 | - 70 | | | 78 | 2.5 | 6750 | 1.0E-08 | + | | 71366 | 1,1,1-7/schloroetherre | 1 | 16 | 15 | 10 | La | 1 | 1.5 | 0.43 | 0.3 | 0.002 | 70 | | Ť | 76 | 2.5 | 8780 | 1.06-08 | 1 | | 110427 | Cycloheome | | 15 | 10 | 10 | 1.3 | 1 | 1.5 | 0.43 | 03 | 0.002 | 70 | ь | | 78 | 23 | 8780
8780 | 1.QE-06 | 1 1 | | 71432 | Bergene | 2.10E+02 | 16 | 1-12- | 10 | | 1 | 1.5 |
0.43
0.45 | 0.3 | 0.002 | no | - | 6 | 78 | 2.5 | 8780 | 1,05-08 | 1 | | race# | Trichloroethylene | 2 81E+72 | 15 | 1 | 10 | | 1 | 1,5 | | 0.3 | 0.002 | 70 | | - 6 | 78 | 25 | 8760 | 1.0E-08 | | | HMATE | Methyl cyclohecene | 4.4天+62 | 16 | 15 | 10 | LS | 1 | 1.3 | 0.43 | | 9.002 | 70 | | | 76 | 2.0 | 8760 | 1.06-01 | 1 1 | | 100117 | Tokune | 8 155+02 | 16 | 18 | 10 | 1.5 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 5 | - - | 78 | 2.8 | 8780 | 1 0E-08 | + + + | | TET 144 | Tetrachioraethylene | 1.476+00 | 15 | 15 | 10 | 1 18 | | 1.5 | 0.43 | 9.3 | 0.002 | 70 | 1 2 | - | 78 | 2.5 | 8760 | 1.06-06 | | | MANUT | Chlorobenzene | 3.11E+02 | 15 | 15 | 10 | (8 | 1 | 1.5 | 0.43 | 03 | 0.902 | 70 | i i | - 6 | 76 | 7.6 | 8760 | 1,05-08 | | | MAN | Eftyibenzene | 1.846+02 | 16 | 13 | 10 | Lis | 1-1-1 | 1.5 | 0.43 | 33 | 9 902 | 70 | 8 | 6 | 76 | 2.5 | 8760 | 108-06 | , | | 120007 | Xylenes | | | 15 | | Ls | 1 | 1.5 | 0.43 | 0.3 | 0.002 | 70 | | - | 78 | 2.5 | 6760 | 1.0E-06 | | | 100-CB | Styrene | | 15 | 19 | 10 | 1.8 | 1 | 3.5 | 0.43 | 93 | 0.002 | 70 | | | 78 | 2.6 | 8780 | 1.0E-08 | | | ***** | leopropy(benzene | | 12 | | 10 | - 18 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | | | 78 | 2.6 | 87 8 0 | 1 00-44 | , | | 79046 | 1,1,2,2-Tetrachiorosthane | 1,006+02 | 15 | 1 18 - | +0 | LS | 1 | 15 | 0.43 | 0.3 | 0.002 | 70 | 1 - | • | 70 | 2.3 | 8780 | 1,0€-06 | - | | MIN | Dichlorobenzene, 1,3- | 2,50E+02 | 15 | 18 | 10 | (8 | 1 | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 6 | | 78 | 2.5 | 6760 | 1.0E-06 | + + - | | *************************************** | 1,4-Olchioroberome | 6.16E+01 | 19 | | 10 | (E | 1 | 1.5 | 0.43 | 0.3 | 0.002 | 70 | | | 7E | 26 | 8760 | 1.0E-08 | | | - | 1,2-Olchiorobenzene | 0.102-31 | 15 | | 10 | - 6 | | 1.5 | 0.43 | 0.3 | 9.002 | 70 | • | - 6 | 76 | 2.5 | 8790 | 1.0E-06 | 1 | | 120021 | 1,2.4-Trichlorchanzene | | 19 | 16 | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 6 | 8 | 78 | 2.5 | 6780 | 1.0E-06 | 1 | | 4400,77 | Bergaldehyde | 5,41E+03 | 18 | 15 | 10 | | 1 | 12 | 0.43 | 0.3 | 0.002 | 76 | 8 | 8 | 76 | 2.5 | 8780 | 105-24 | 1 1 | | E1974 | Metrylnephthalene, 2- | 0,016-02 | 15 | 15 | 10 | Lis . | | 1,5 | 0.43 | 0.3 | 0.002 | 70 | - 6 | | 78 | 2.5 | 8750 | 1 0E-08 | 1 | | E20 H | Biphany, 1,11- | 4,00E-02 | 18 | 15 | 10 | is . | 1 | 1.5 | 0.43 | 0.3 | 0,002 | 70 | 6 | | 78 | 2.5 | 8760 | 1 0E-08 | 1 | | 300011 | Acensphiliylene | *************************************** | 15 | 15 | 10 | 18 | 1 | 1.5 | 0.45 | 0.3 | 0.002 | 70 | - | | 76 | 2.6 | 8762 | 1.06-08 | 1 | | 470 | Acenaphthene | 1,79E+03 | 16 | 15 | 10 | LS | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | • | | 78 | 2.5 | 8760 | 1.0E-08 | 1 | | 1230-10 | Diberas/uran | 1,145,103 | 15 | 1 16 - | 10 | 1 | 1 | 1.5 | 0.43 | 0.5 | 0.002 | 70 | | | 78 | 2.6 | ■760 | 1.06-06 | 1 1 | | 2017 | Fluorena | 3.66E+04 | 15 | 13 | 16 | Lis . | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 6 | | 78 | 2.5 | 8780 | 1,0£-08 | 1 | | 99713 | Phenantivene | 3.002734 | 15 | 15 | 18 | 18 | | 1.5 | 0.45 | 03 | 0.002 | 70 | - | - 6 | 78 | 2.6 | 8760 | 1.0E-08 | ١, | | 120127 | Anthracene | 9.83E+04 | 16 | 15 | 10 | LS | | 1,5 | 0.43 | 0.3 | 0.002 | 70 | | - 6 | 78 | 2.5 | 8760 | 1.0E-06 | 1 | | ca-ca | C5-C8 Aliphatics | 4.11E+04 | 16 | 16 | 10 | 18 | +; | 1.5 | 0.43 | 03 | 9 902 | 70 | - 6 | 9 | 78 | 2.6 | 6700 | 1.0E-06 | 1 | | CHCHE | CS-C12 Aliphatica | 4.316+08 | 15 | 13 | 10 | LS | 1 | - 18 | 0.43 | 0.3 | 0.002 | 70 | 6 | 8 | 78 | 2,6 | 8760 | 1.0E-06 | , | | GION | C9-C10 Aromatice | 8.04E+08 | 16 | 15 | 16 | 1 13 | 1 | 13 | 0.63 | 0.3 | 0.002 | 70 | | | 7.8 | 2.5 | 8750 | 1.0E-06 | | | CSCII | C9-C18 Allphatter C11-C22 Aromatics | 4.106+01 | 13 | 13 | 10 | l is | 11 | 1.8 | 0,43 | 0.3 | 0.002 | 70 | 6 | - 8 | 78 | 2.5 | 8760 | 1.0E-06 | 1 | | 019-022 | C114C22 Albinact | 1 | | <u> </u> | | · | | | | | | | | | | | | | | house: 1) Default and parameters from latter T of Limit's Guide for Evaluating Subsection Visco (visco) who Guideling (U.S. EPA June 18, 2005) warp used for each union filled powerly (S.), and organic centres freedom (L.). and (pit) parameter (r), and soil day to be consistent of the consistency (S.). Appendix C.4 Johnson & Ettinger Model - Data Entry Screen Inhalation of Volatiles from Soil Future Child Recreational Scenario - RME Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Whitney Barrel | Chemical
CAS No.
(numbers only,
no dashes) | Chemical | Diffusivity
in air,
D _*
(cm ² /s) | Diffusivity
in water,
D _w
(cm ² /s) | Henry's
law constant
at reference
temperature,
H
(atm-m³/mol) | Henry's
law constant
reference
temperature,
T _R
(°C) | Enthalpy of vaporization at the normal boiling point, ΔH_{cb} {cal/mol} | Normal
boiling
point,
T _B
(°K) | Critical
temperature,
To
(°K) | Organic
carbon
partition
coefficient,
K _{sc}
(cm ³ /g) | Pure component water solubility, S (mg/L) | Unit
risk
factor,
URF
(µg/m³)-1 | Reference
conc.,
RfC
(mg/m³) | Physical
state at
soil
temperature,
(S.L.G) | |---|--|--|--|--|--|---|---|--|---|---|---|---------------------------------------|---| | 95636 | Trimethylbenzene, 1,2,4- | 7.80E-02 | 9.03E-06 | 5.70E-03 | 25 | 1.25E+03 | 442.30 | 649.11 | 3.72E+03 | 5.70E+01 | N/A | 6.0E-03 | | | 540590 | Dichloroethylene, 1,2- (total) | 5.59E-02 | 6.47E-06 | 4.30E-04 | 20 | 1.32E+03 | 585.00 | 877.50 | 1,28E+02 | 1.30E+00 | #N/A | #N/A | 0.0E+00 | | 108678 | Trimethylbenzene, 1,3,5- | 6.48E-02 | 7.86E-06 | 7.81E-03 | 25 | 1,25E+03 | 442.30 | 649.11 | 1.67E+03 | 2.00E+01 | N/A | 6.0E-03 | U.VE+00 | | 104518 | n-Butylbenzene | 7.25E-02 | 8.39E-06 | 1.25E-02 | 25 | 1.23E+03 | 456.00 | 684.00 | 2.51E+03 | 1.26E+00 | #N/A | #N/A | | | 91203 | Naphthalene | 5.90E-02 | 7.50E-06 | 4.83E-04 | 25 | 1.04E+04 | 491.14 | 748.40 | 2.00E+03 | 3.10E+01 | N/A | 3.0E-03 | s | | 99876 | Isopropyttoluene, 4- | 7.25E-02 | 8.39E-06 | 8,60E+00 | 25 | 1.24E+03 | 450,10 | 652,04 | 1.58E+03 | 2.34E+01 | N/A | 4.0E-01 | - · · | | 135988 | Butylbenzene, sec- | 8.00E-02 | 8.00E-06 | 1.67E-02 | 25 | 1.24E+03 | 446.65 | 669,98 | 3.11E+04 | 1.76E+01 | #N/A | #N/A | 0.0E+00 | | 74873 | Chloromethane | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1.35E+03 | 249.00 | 373.50 | 1.43E+01 | 5,32E+03 | N/A | 9.0E-02 | 0.0E+00 | | 75014 | Vinyf chloride | 1.06E-01 | 1.23E-05 | 2.71E-02 | 25 | 5.25E+03 | 259.25 | 432.00 | 1.86E+01 | 2.76E+03 | B.BE-06 | 1.0E-01 | 0.02700 | | 74839 | Bromomethane | 7.28E-02 | 1.21E-05 | 6.22E-03 | 25 | 5.49E+03 | 276,50 | 414.75 | 1.43E+01 | 1.52E+04 | N/A | 5.0E-03 | 0.0E+00 | | 75003 | Ethyl Chloride | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1,36E+03 | 249.00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 1.0E+01 | L | | 75354 | 1,1-Dichloroethylene | 9.00E-02 | 1,04E-05 | 2.61E-02 | 25 | 6.25E+03 | 304.75 | 576,05 | 5.89E+01 | 2.25E+03 | N/A | 2.0E-01 | | | 76131 | Trichloro-1,2,2-triflouroethane, | 2.88E-02 | 8.07E-06 | 5.17E-01 | 25 | 1.33E+03 | 320.70 | 481.05 | 2.25E+02 | | N/A | 3.0E+01 | · 0.0E+00 | | 97944 | 1,1,2- | | | | | | | | | 1.70E+02 | , | 0.02.01 | 0.02.00 | | 67641 | Acetone | 1.24E-01 | 1.14E-05 | 3.88E-05 | 25 | 6.96E+03 | 329.20 | 508.10 | 5.75E-01 | 1.00E+06 | N/A | N/A | , | | 75150 | Carbon Disulfide | 1.04E-01 | 1.29E-05 | 1.27E-02 | 25 | 5.39E+03 | 319,00 | 552.00 | 5.14E+01 | 2.67E+03 | N/A | 7.0E-01 | | | 79209 | Methyl Acetate | 1.04E-01 | 1.00E-05 | 1.13E-04 | 25 | 1.31E+03 | 365.00 | 547.50 | 3.32E+00 | 2.43E+05 | #N/A | #N/A | 0.0E+00 | | 75092 | Methylene chloride | 1.01E-01 | 1.17E-05 | 2.19E-03 | 25 | 6.71E+03 | 313,00 | 510.00 | 1.17E+01 | 1.30E+04 | 4.7E-07 | 3.0E+00 | U.UL.700 | | 156605 | trans-1,2-Dichloroethylene | 7.07E-02 | 1.19E-05 | 9.39E-03 | 25 | 1.33E+03 | 320.85 | 516.50 | 5.25E+01 | 6.30E+03 | N/A | 2.0E-01 | I. | | 1634044 | Methyl-Tentiary-Butyl Ether | 1.02E-01 | 1,05E-05 | 5.87E-04 | 25 | 1.32E+03 | 328.36 | 497.11 | 3.84E+01 | 5.10E+04 | N/A | 3.0E+00 | <u> </u> | | 75343 | 1,1-Dichloroethane | 7.42E-02 | 1.05E-05 | 5.61E-03 | 25 | 6.90E+03 | 330.55 | 523.00 | 3.16E+01 | 5.06E+03 | N/A | 5.0E-01 | | | 156592 | cis-1,2-Dichlorgethylene | 7.36E-02 | 1.13E-05 | 4.07E-03 | 25 | 7.19E+03 | 333.65 | 544.00 | 3.55E+01 | 3.50E+03 | N/A | 2.0E-01 | | | 78933 | Butanone, 2- (MEK) | 8.08E-02 | 9.80E-06 | 5.60E-05 | 25 | 1,31E+03 | 352.50 | 528.75 | 3.83E+00 | 2.23E+05 | N/A | N/A | 0.0E+00 | | 71556 | 1,1,1-Trichloroethane | 7.80E-02 | 8.80E-06 | 1.72E-02 | 25 | 7.14E+03 | 347.24 | 545.00 | 1.10E+02 | 1.33E+03 | N/A | 2.2E+00 | 0.02.00 | | 110827
71432 | Cyclohexane | 8.00E-02 | 9.00E-06 | 2.00E+00 | 25 | 1.31E+03 | 353.85 | 530.78 | 1.60E+02 | 5.50E+01 | #N/A | #N/A | 0.0E+00 | | | Benzene | 8.80E-02 | 9.80E-06 | 5,56E-03 | 25 | 7.34E+03 | 353.24 | 562.16 | 5.89E+01 | 1.75E+03 | 7.8E-06 | 3.0E-02 | 0.02.00 | | 79016 | Trichloroethylene | 7.90E-02 | 9.10E-06 | 1.03E-02 | 25 | 7.51E+03 | 360.36
 544.20 | 1.66E+02 | 1.10E+03 | 1.1E-04 | 4.0E-02 | 7 | | 108872 | Methyl cyclohexane | 9.86E-02 | 8.52E-06 | 4.23E-01 | 25 | 1.30E+03 | 373.90 | 560.85 | 2.68E+02 | 1.40E+01 | N/A | 3.0E+00 | | | 108883 | Toluene | 8.70E-02 | 8.60E-06 | 6.63E-03 | 25 | 7.93E+03 | 383.7B | 591.79 | 1.82E+02 | 5.26E+02 | N/A | 4.0E-01 | | | 127184 | Tetrachloroethylene | 7.20E-02 | 0.20E-06 | 1.84E+02 | 25 | 8.29E+03 | 394.40 | 620.20 | 1.55E+02 | 2.00E+02 | 5.9E-06 | N/A | | | 108907 | Chlorobenzene | 7.30E-02 | B.70E-06 | 3.71E-03 | 25 | 8.41E+03 | 404.87 | 632.40 | 2,19E+02 | 4.72E+02 | N/A | 6.0E-02 | <u>-</u> | | 100414 | Ethylbenzene | 7.50E-02 | 7.80E-06 | 7.88E-03 | 25 | 8.50E+03 | 409.34 | 617.20 | 3.63E+02 | 1.69E+02 | N/A | 1.0E+00 | | | 1330207 | Xylenes | 7.69E-02 | 8.44E-06 | 6.73E-06 | 25 | 1.26E+03 | 417,40 | 616.21 | 2.41E+02 | 2.20E+02 | N/A | 1.0E-01 | | | 100425 | Styrene | 7.10E-02 | 8.00E-06 | 2.76E-03 | 25 | 8.74E+03 | 418.31 | 636.00 | 7.76E+02 | 3.10E+02 | #N/A | #N/A | | | 98828 | Isopropylbenzene | 6.50E-02 | 7.83E-06 | 1.47E-02 | 25 | 1.26E+03 | 425,40 | 631.01 | 9.31E+03 | 5.60E+01 | N/A | 4.0E-01 | | | 79345 | 1,1,2,2-Tetrachloroethane | 7.10E-02 | 7.90E-06 | 3.44E-04 | 25 | 9.00E+03 | 419.60 | 661.15 | 9.33E+01 | 2.97E+03 | #N/A | #N/A | <u>-</u> - | | 541731 | Dichlorobenzene, 1,3- | 4.14E-02 | 8.85E-06 | 4.70E-03 | 25 | 1.24E+03 | 446.00 | 683.96 | 1.70E+02 | 6.68E+01 | N/A | N/A | | | 106467
95501 | 1,4-Dichlorobenzene | 6.90E-02 | 7.90E-06 | 2.43E-03 | 25 | 9,27E+03 | 447.21 | 684.75 | 6.17E+02 | 7.38E+01 | N/A | 8.0E-01 | S | | 120821 | 1,2-Dichlorobenzene | 6.88E-02 | 9.41E-06 | 1.62E-06 | 25 | 9.70E+03 | 465.00 | 697.50 | 5.34E+01 | 2.77E+04 | N/A | N/A | s | | 100527 | 1,2,4-Trichlorobenzene | 3.00E-02 | 8.23E-06 | 1.42E-03 | 25 | 1.05E+04 | 486,15 | 725.00 | 1.78E+03 | 3.00E+02 | N/A | 2.0E-01 | [| | 91576 | Benzaldehyde | 7.30E-02 | 9.07E-06 | 2.62E-05 | 25 | 1.24E+03 | 452.00 | 678,00 | 3.27E+01 | 6.57E+03 | #N/A | #N/A | 0.0E+00 | | 92524 | Methylnaphthalene, 2-
Biphenyl, 1,1'- | 4.84E-02 | 7.75E-06 | 1.01E-03 | 25 | 1.17E+03 | 514.05 | 761.01 | 8.51E+03 | 2.46E+01 | N/A | 3.0E-03 | S | | 208968 | Acenaphthylene | 4.04E-02 | 8.15E-06 | 3.03E-04 | 25 | 1.15E+03 | 529.10 | 793.65 | 6.25E+03 | 6.94E+00 | N/A | N/A | 0.0E+00 | | 83329 | | 4.43E-02 | 7.44E-06 | 2.80E-04 | 25 | 1.12E+03 | 553.00 | 792.01 | 4.79E+03 | 3.93E+00 | N/A | 3.0E-03 | S | | 132649 | Acenaphthene
Dibenzofuran | 4.21E-02 | 7.69E-06 | 1.55E-04 | 25 | 1.22E+04 | 550.54 | 803.15 | 7.08E+03 | 4.24E+00 | N/A | 3.0E-03 | S | | 86737 | Fluorene | 2.67E-02 | 5.93E-06 | 4.00E-03 | 25 | 1.11E+03 | 559.00 | 824.01 | 8.13E+03 | 1.00E+01 | N/A | N/A | s | | 85018 | Phenanthrene | 3.63E-02 | 7.88E-06 | 9.41E-08 | 25 | 1.27E+04 | 570.44 | 870.00 | 7.71E+03 | 1.90E+00 | N/A | 3.0E-03 | Š | | 120127 | Anthracene | 3.30E-02 | 7.47E-06 | 1.30E-04 | 25 | 1.06E+03 | 613.00 | 869,01 | 1.41E+04 | 1.28E+00 | N/A | 3.0E-03 | S | | C5-C8 | C5-C8 Aliphatics | 3.24E-02 | 7.74E-06 | 6.51E-05 | 25 | 1.31E+04 | 615.18 | 873.00 | 2.95E+04 | 4.34E-02 | N/A | 3.0E-03 | S | | C9-C12 | C9-C12 Aliphatics | 6.00E-02 | 1.00E-05 | 1.30E+00 | 25 | NA NA | NA | NA | 2.27E+03 | 1.10E+04 | N/A | 2.0E-01 | S | | C9-C10 | C9-C10 Aromatics | 6.00E-02
6.00E-02 | 1.00E-05 | 1.56E+00 | 25 | NA NA | NA | NA | 1.50E+05 | 7.00E+01 | N/A | 2.0E-01 | S | | C9-C18 | C9-C18 Aliphatics | 6.00E-02 | 1.00E-05
1.00E-05 | 7.92E-03 | 25 | NA | NA | NA | 1.78E+03 | 5.10E+04 | N/A | 5.0E-02 | S | | C11-C22 | C11-C22 Aromatics | 6.00E-02 | | 1.66E+00 | 25 | NA. | NA NA | NA | 6.80E+05 | 1.00E+01 | N/A | 2.0E-01 | S | | | C. FORZ FIGURES | 9.405-02 | 1.00E-05 | 7.32E-04 | 25 | NA | NA N | NA | 5.00E+03 | 5.80E+03 | N/A | 5.0E-02 | S | Appendix C.4 Johnson & Ettinger Model - Data Entry Screen Inhalation of Volatiles from Soil Future Child Recreational Scenario - RME Southwest Prpertiee, Welle G&H Supertund Site, Operable Unit 2 Writiney Barrel | | | | | Vadose zone | Vadose zone | Vadose zone | Vadose zone | Floor- | | | enclosed | Crack- | Crack | Enthalpy of | Henry's law | Herr√s law | Vapor | Zoné | |----------------|---|-------------------|------------|-------------|---------------|----------------------------------|---------------------------------------|----------------------|---------------|-------------|-----------|------------|-------------------|----------------------|-----------------|--------------|--------------------|-------------------| | | | Source- | scii | effective | ioi | aoil | 20E | wall | initial soil | Bido. | space | to-total | depth | /aportzation s | | constant at | viscosity at | effective | | Chemical | | building | air-filled | total fluid | intrinsic | relative air | effective vecor | seam | concentration | ventilation | pelow | area | below | eve. soù | ave. soil | eve. soil | ave. soli | diffusion | | CAS No. | | | porosity, | saturation. | permeability. | | | | | rale. | grade. | ratio. | grade, | temperature, | | temperature, | temperalure, | coefficient, | | (numbers only. | | seperation,
LT | porosity, | Securation, | permeasily, | permeability,
k _{re} | permeability,
k, | perimeter,
Xorack | used,
CR | Charles | Α. | П | Z _{ones} | ΔH _{4.15} | H _{TS} | HTS | ите
В прогосото | D ^{ee} v | | - | | | . 1. 1. | | | | · · · · · · · · · · · · · · · · · · · | | | | | • | | | (atm-m³/mol) | | | (cm²/s) | | no deshes) | Chemical | (cm) | (cm³/cm³) | (cm³/cm³) | (cm²) | (cm²) | (cm²) | (cm) | (µg/kg) | (cm³/s) | (cm²) | (unitiess) | (cm) | (cal/mol) | (Mm-m /mor) | (unitless) | (g/cm-s) | (6/11/15) | 95636 | Trimelhylbenzens, 1,2,4- | 1 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.36E+05 | 2.52E+06 | 9.50E+06 | | 15 | 1.55E 03 | 4 96E-03 | 2.13E-01 | 1.75E-04 | 4.77E-04 | | 540690 | Dichloroethylene, 1,2- (total) | 1 | 0.130 | 0.869 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.96E+02 | 2.52E+06 | 9.50E+05 | 1.30E-04 | 15 | 1.73E+03 | 3.87E-04 | 1.67E-02 | 1.75E-04 | J.77E-04 | | 108678 | Trimelhylbenzene, 1,3,5- | 1 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 7.13E+04 | 2.52E+08 | 9.50E+06 | 1 30E-04 | 15 | 1.55E+03 | 6.B0E-03 | 2.93E-01 | 1 75E-04 | 3.05E-04 | | 104518 | n-Bulylbenzene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 8.83E+03 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1.53E+03 | 1.00E-02 | 4.89E-01 | 1.75E-04 | 4.41E-04 | | 91203 | Naphthalene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.74E+03 | 2.52E+06 | 9.50E+06 | 1 30E-04 | 15 | 1.29E+04 | 1.52E-04 | 8.55E-03 | 1.75E-04 | 4.70E-04 | | 99876 | Isopropyltoluene, 4- | 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 7 31E+05 | 2.52E+06 | 9.50E+08 | 1 30E-04 | 15 | 1.57E+03 | 7.48E+00 | 3.22E+02 | 1.75E-04 | 4,39E-04 | | 135988 | Butylbenzene, sec- | 1 | 0.130 | 0.658 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.10E+06 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | | 1.48E-02 | 6.27E-01 | 1.76E-04 | 4.88E-04 | | 74873 | Chioromethane | 1 | 0.130 | 0.869 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.49E+02 | 2.52E+06 | 9.50€+08 | 1.30E-04 | 15 | 1,20E+03 | 7.79E+03 | 3.35E-01 | 1.75E-04 | 7.86E-04 | | 75014 | Vinyl chloride | 1 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6,33E-09 | 1,72E+04 | 2.61E+02 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 5.00E+03 | 1,73E-02 | 7.46E-01 | 1.75E-04 | 6.44E-04 | | 74839 | Bromomethane | 1 | 0,130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 3.69E+06 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 5.39E+03 | 3.64E-03 | 1.65E-01 | 1.75E-04 | 4.48E-04 | | 75003 | Elhyl Chloride | 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 8.80E+01 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.20E+03 | 7.78E-03 | 3.35€-01 | 1,75E-04 | 7.68E-04 | | 75354 | 1,1-Dichloroethylene | 1 | 0.130 | 0.659 | 1,82E-08 | 0.390 | 8.33E-Q9 | 1,72E+04 | 1.20E+02 | 2.52E+06 | 9.50E+06 | 1 30E-04 | 15 | 6.39E+03 | 1.47E-02 | 6.34E-01 | 1,75E-04 | 5.47E-04 | | 78131 | Trichloro-1,2,2-triflouroethane, 1,1,2- | 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 3.99E+05 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1.44E+03 | 4.65E-01 | 1.96E+01 | 1.75E-04 | 1.75E-04 | | 67641 | Acetone | 1 | 0.130 | 0.858 | 1.826-08 | 0.390 | 6.33E-09 | 1.72E+04 | 3.24E+02 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 7,58E+03 | 1.97E-05 | 8.50€-04 | 1.75E-04 | 2.07E-03 | | 75150 | Carbon Disuffide | 1 | 0.130 | 0.65B | 1.62E-08 | 0.390 | 8 33E-09 | 1.72E+04 | 8.78E+05 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 6.86E+03 | 6.99E-03 | 3.01E-01 | 1,75E-04 | 6.34E+04 | | 79209 | Methyl Acetate | 1 | 0.130 | 0.859 | 1.82E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 5.03E+07 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1,50E+03 | 9.886-05 | 4.25E-03 | 1.75E-04 | 8.61E-04 | | 75092 | Methylene chloride | 1 | 0.130 | 0.850 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 7.27E+02 | 2.52E+08 | 9.50E+06 | 1,30E-04 | 15 | 7.03E+03 | 1 17E-03 | 5.03E-02 | 1.75E-04 | 8.35E-04 | | 156605 | Irana-1,2-Dichloroethylene | | 0.130 | 0.659 | 1.62E-06 | 0.390 | 6.33E-09 | 1.72E+04 | 7.73E+01 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.42E+03 | 8.27E-03 | 3.58E-01 | 1,75E-04 | 4.32E-04 | | 1634044 | Methyl-Terliary-Bulyl Ether | - | 0.130 | 0.859 | 1.62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 5.75E+01 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.45E+03 | 5.18E-04 | 2.22E-02 | 1.75E-04 | 6.67E-04 | | 75343 | 1.1-Dichloroethane | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 8.33E-09 | 1,72E+04 | 3.58E+02 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 16 | 7.45E+03 | 2.88E-03 | 1.24E-01 | 1.75E-04 | 4.58E-04 | | 158582 | cts-1,2-Dichloroethylene | + | 0.130 | 0.659 | 1.62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 1.80E+02 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 7.73E+03 | 2.04E-03 | 8.77E-02 | 1.75E-04 | 4.59E-04 | | 78933 | Butanone, 2- (MEK) | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 5.33E-09 | 1.72E+04 | 4.63E+07 | 2.52E+06 | 9.50E+08 |
1.30E-04 | 15 | 1.49E+03 | 4.90E-05 | 2.11E-03 | 1.75€-04 | 9.45E-04 | | 71556 | 1.1.1-Trichloroethane | | 0 130 | 0.659 | 1,62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 6.01E+05 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 7.88E+03 | 8.50E-03 | 3.68E-01 | 1.75E-04 | 4.76E-04 | | 110827 | Cyclohaxane | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 3.88E+05 | 2.62E+06 | 9.50E+06 | 1.30E-04 | 15 | 1.49E+03 | 1.75E+00 | 7.54E+01 | 1.75E-04 | 4 B5E-04 | | 71432 | Benzene | i i | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1,72E+04 | Z.10E+02 | 2.62E+08 | 9.50E+08 | 1 30E-04 | 15 | 8.12E+03 | 2.69E-03 | 1.16E-01 | 1.75E-04 | 5.42E-04 | | 79016 | Trichloroethylene | -:- | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | Z.81E+02 | 2.52E+06 | 8.50E+05 | 1.306-04 | 15 | 8.56E+03 | 4.79E-03 | 2.08E-01 | 1.75E-04 | 4.83E-04 | | 106872 | | | 0.130 | 0.659 | 1,62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.45E+02 | 2 52E+06 | 9.50€+06 | 1 30E 04 | 15 | 1.51E+03 | 3.70E-01 | 1.59E+01 | 1.75E-04 | 5.98E-04 | | 106883 | Methyl cyclohexane
Toluene | | 0.130 | 0.659 | 1.52E-08 | 0,390 | 6.336-09 | 1.72E+04 | 5.85E+02 | 2 52E+08 | 9.50E+08 | 1.30E-04 | 15 | 9.15E+03 | 2.92E-03 | 1.26E-01 | 1.75E-04 | 5.34E-04 | | | | 1 | | | | | | 1.72E+04 | 1,47E+02 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 9.56E+03 | 7.83E-03 | 3 37E-01 | 1.75E-04 | 4.39E-04 | | 127184 | Tetrachtoroethylene | | D.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | | 3.11E+02 | 2.52E+08 | 9.50E+05 | 1.30E-04 | 15 | 9.80E+03 | | 6.65E-02 | 1.75E-04 | 4.65E-04 | | 108907 | Chlorobenzene | 1 | 0.130 | 0.659 | 1.52E-08 | 0.390 | 6.338-09 | 1.72E+04 | | | | | 15 | | 3.186-03 | 1.37E-01 | 1.75E-04 | 4,50E-04 | | 100414 | Ethylbenzene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 1.84E+02 | 2.52E+06 | 9.50E+06 | 1.30€-04 | 15 | 1.02E+04
1.54E+03 | 5.88E-08 | 2.52E-04 | 1.76E-04 | 3.75E-03 | | 1330207 | Xylenes | _ ! _ | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 1.50E+05 | 2.52E+06 | 9.50E+06 | 1.30€-04 | 15 | | 1.00E-03 | 4.67E-02 | 1.75E-04 | 4.47E-04 | | 100425 | Styrene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.77E+04 | 5.44E+06 | 2.52E+08 | 9.50E+08 | 1,30E-04 | | 1.05E+04 | | 5.51E-01 | 1.75E-04 | 3.95E-04 | | 98828 | Isopropy/benzene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.08E+08 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1.54E+03 | 1.28E-02 | 5.77E-03 | 1.75E-04 | 5.65E-04 | | 79345 | 1,1,2,2-Tetrachloroethane | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.15E+08 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1.05E+04 | 1.34E-04 | | 1.75E-04 | 2.56E-04 | | 541731 | Dichlorobenzene, 1,3- | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.00E+02 | 2.52E+06 | 9.50€+06 | 1.30E-04 | 15 | 1.50E,+03 | 4.11E-03 | 1.77E-01 | | 4.38E-04 | | 106467 | 1,4-Dichlorobenzene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+Q4 | 2 50E+02 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1.12E+04 | 9.89E-04 | 3.83E-02 | 1.75E-04 | | | | 1,2-Dichlorobenzene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 5.10E+01 | 2.52E+06 | 9.50£ +08 | 1.30E-64 | 15 | 1,21E+04 | 5.51E-07 | 2,37E-05 | 1,75E-04 | 3.94E-02 | | | 1,2,4-Trichlorobenzene | . 1 | 0.130 | 0,659 | 1.62E-06 | 0.390 | 6.33E-09 | 1,72E+04 | 1,13E+06 | 2.52E+06 | 9.50E+06 | 1,30E-04 | 15 | 1.32E+04 | 4,35E-04 | 1.87E-02 | 1.75E-04 | 2.25E-04 | | 100527 | Benzaldehyde | | 0.130 | 0,659 | 1,82E-08 | 0.390 | 6.33E-09 | 1,72E+04 | 1.74E+08 | 2.526+08 | 9.50E+08 | 1.30E-04 | 15 | 1.53E+03 | 2.29E-05 | 9.64E-04 | 1,75E-04 | 1,356-03 | | 91576 | Melhylnaphihalene, 2- | 1 | 0.130 | 0,659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.41E+03 | 2.52E+08 | 9,50E+06 | 1.30E-04 | 15 | 1.51E+03 | 8.85E-04 | 3.815-02 | 1.75E-04 | 3.13E-04 | | 92524 | Biphenyl, 1,1'- | 1 | 0.130 | 0.869 | 1.82E-08 | 0.390 | 6,33E-09 | 1,72E+04 | 6.61E+04 | 2.52E+06 | 9,50E+00 | 1.30E-04 | 15 | 1.47E+03 | 2.66E-04 | 1.14E-02 | 1.75E-04 | 3.15E-04 | | 208968 | Acenephthylene | 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.00E+02 | 2,52E+00 | 9.50E+08 | 1.30E-04 | 15 | 1.51E+03 | 2.45E-04 | 1.06E-02 | 1.75E-04 | 3,38E-04 | | 83329 | Acenaphthene | 11 | 0.130 | 0.659 | 1,62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 8.09E+04 | 2.52E+08 | 9.50E+08 | 1,30E-04 | 15 | 1,01E+04 | 3.67E-05 | 1,58E-03 | 1.756-04 | 7.33E-04 | | 132649 | Dibenzofuran | 1 | 0.130 | 0.669 | 1 826-08 | 0.390 | 6.33E-09 | 1,72E+04 | 1.79E+09 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.47E+03 | 3.51E-03 | 1,51E-01 | 1.75E-04 | 1.88E-04 | | 86737 | Fluorena | 1 | 0.130 | 0.659 | 1.825-08 | 0,390 | 6.33E-09 | 1.72E+04 | 2.97E+04 | 2.52E+05 | 9,50E+08 | 1,30E-04 | 15 | 1.62E+04 | | 9.48E-07 | 1.75E-04 | 8,16E-01 | | 85018 | Phenanthrene | 1 | 0.130 | 0.859 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 3,64E+04 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1.486+03 | | 4.90E-03 | 1,75E-04 | 3.50E-04 | | 120127 | Anthracene | 1 . | 0.130 | 0.859 | 1,62E-08 | 0.390 | 5.33E-Q9 | 1.72E+04 | 7.57E+03 | 2.52E+06 | 9,50E+08 | 1.30E-04 | 15 | 1.84E+04 | | 5.43E+04 | 1.75E-04 | 1.60E-03 | | C5-C8 | C5-C5 Aliphatics | 1 | 0.130 | 0.859 | 1.52E-06 | 0,360 | 8.33E-08 | 1,72E+04 | 9.836+04 | 2.52E+06 | 9.50E+05 | 1.30E-04 | 15 | NA | 6,48E-01 | 2.79E+01 | 1.75E-04 | 3.64E-04 | | C9-C12 | C9-C12 Aliphatics | 1 | 0.130 | 0.559 | 1 82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 9.11E+04 | 2.52E+05 | 9.50E+05 | 1.30E-04 | 15 | NA NA | 7.50E-01 | 3.38E+01 | 1.75E-04 | 3.64E-04 | | C9-C10 | C9-C10 Aromatics | 1 | 0.130 | 0.859 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.31E+05 | 2,62E+08 | 9.50E+06 | 1.30E-04 | 15 | NA | 3.96E-03 | 1.70E-01 | 1.75E-04 | 3.69E-04 | | | C9-C18 Aliphatics | 7 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 6.04E+06 | 2 52E+06 | 9.50€+05 | | 15 | NA | 8.286-01 | 3.58E+01 | 1.75E-04 | 3,64E-04 | | C9-C18 | Carc to Aliphanica | | | | | | | | | | | 1.30E-04 | 15 | NA. | 3,60E-04 | 1.55E-02 | 1,75E-04 | 4 27E-04 | Appendix C.4 Johnson & Etilnger Model - Data Entry Screen Inhalation of Volatilee from Soll Future Child Recreational Scenario - RNE Southwest Persina, Wells G&H Superfund Site, Operable Whitney Barrel | Chemical
CAS No.
(numbers only. | | Diffusion
path
tength, | Convection path length, | Soil-water
partition
coefficient, | Source
Vapor
conc., | Creck
radius, | Average
vapor
flow rate
into bidg | Crack
effective
diffusion
coefficient, | Area of crack, | Exponent of
equivalent
foundation
Peciat
number, | infinite
source
indoor
attenuation
coefficient, | Infinite
source
bidg.
conc., | Unit
risk
factor, | Reference conc., | |---------------------------------------|--|------------------------------|-------------------------|---|---------------------------|---------------------------------------|--|---|----------------------------|--|---|---------------------------------------|------------------------------|--------------------| | no dashes) | Chemical | {cm} | لب
(cm) | K _e
(cm³/g) | (h6/m _s) | (cm) | Q _{ma}
(cm³/s) | D ^{oteck}
(cm²/s) | A _{rmat}
(cm²) | exp(Pef)
(unitless) | o.
(unitless) | C _{hurters}
{µg/m³} | URF
(µg/m³) ⁻¹ | (mg/m²) | | 96638 | Trimelhy/benzene, 1,2,4- | 1 1 | T | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | 540590 | Dichloroethylene, 1,2- (total) | 1 | 15 | 7.43E+00
2.57E-01 | N/A
N/A | 0.10 | 2.74E+01
2.74E+01 | 4.77E-04 | 1.23E+03 | 2.75E+303 | 1,08E-05 | N/A | N/A | 6.0E-03 | | 108878 | Trimelhylbenzene, 1,3,5- | | 15 | 3.34E+00 | N/A | 0.10 | 2.74E+01 | 3.77E-04
3.96E-04 | 1 23E+03 | #NUMI | 1.08E-05 | N/A | #N/A | #N/A | | 104516 | n-Bulylbenzene | 1 | 15 | 5.02E+00 | N/A | 0.10 | 2.74E+01 | 4.41E-04 | 1.23E+03
1.23E+03 | #NUM
#NUM | 1.08E-05
1.08E-05 | N/A
N/A | N/A
#N/A | 6.0E-03
#N/A | | 91203 | Naphthalene | 1 | 15 | 4.00E+00 | 4 27E+03 | 0.10 | 2.74E+01 | 4,70E-04 | 1.23E+03 | 9.67E+307 | 1,08E-05 | 4.61E-02 | N/A | 3.0E-03 | | 99575 | isopropyltoiuene, 4- | 1 | 16 | 3 16E+00 | N/A | 0.10 | 2.74E+01 | 4,39E-04 | 1.23E+03 | #NUMI | 1.08E-05 | N/A | N/A | 4.0E-01 | | 135968 | Butylbenzene, sec- | 1. | 16 | 8.22E+01 | N/A | 0.10 | 2.74E+01 | 4.86E-04 | 1.23E+03 | 5.47E+297 | 1.00E-05 | N/A | #N/A | #N/A | | 74873 | Chloromethane | | 15 | 2.66E-02 | 3.24E+05 | 0.10 | 2.74E+01 | 7.86E-04 | 1,23E+03 | 1.14E+189 | 1.08E-05 | 3.51E+00 | N/A | 9.0E-02 | | 75014 | Vinyl chioride | 1 | 15 | 3.72E-02 | 6.48E+05 | 0.10 | 2.74E+01 | 6.44E-04 | 1.23E+03 | 5.27E+224 | 1.08E-06 | 8.99E+00 | 8.8E-08 | 1.0E-01 | | 74839 | Bromomethans | 1 | 15 | 2.66E-02 | N/A | 0.10 | 2.74E+01 | 4.48E-04 | 1.23E+03 | #NUMI | 1.08E-06 | N/A | N/A | 5.0E-03 | | 75003 | Ethyl Chloride | 1 | 15 | 2.66E-02 | 1.12E+05 | 0.10 | 2.74E+01 | 7.68E-04 | 1.23E+03 | 1.14E+189 | 1.08E-05 | 1,21E+00 | N/A | 1.0E+01 | | 75354 | 1,1-Dichloroethylene | 1 | 15 | 1.18E-01 | 2.04E+05 | 0.10 | 2.74E+01 | 5.47E-04 | 1.23E+03 | 3.62E+284 | 1.08E-05 | 2,21E+00 | N/A | 2.0E-01 | | 76131 | Trichloro-1,2,2-triflouroethane, 1,1,2- | 1 | 15 | 4.50E-01 | N/A | 0.10 | 2 74E+01 | 1.75E-04 | 1.23E+03 | #NUM! | 1.07E-05 | N/A | N/A | 3.0E+01 | | 87841 | Acetone | | 15 | 1.15E-03 | 1.37E+03 | 0.10 | 2.74E+01 | 2.07E+03 | 1.23E+03 | 9.18E+69 | 1 09E-05 | 1.48E-02 | N/A | N/A | | 75150 | Carbon Disulfide | | 15 | 1.03E-01 | N/A | 0.10 | 2.74E+01 | 6.34E-04 | 1,23E+03 | 1.25E+228 | 1.08E-06 | N/A | N/A | 7.0E-01 | | 79209
75092 | Methyl Acelete | | 15 | 6.64E-03 | N/A | 0.10 | 2.74E+01 | 8.61E+04 | 1.23E+03 | 1.17E+188 | 1.08E-05 | N/A | #N/A | #N/A | | 158606 | Methylene chloride | | 15 | 2.345-02 | 1.50E+05
| 0.10 | 2.74E+01 | 8.35E-94 | 1.23E+03 | 8.55E+227 | 1,08E-05 | 1.73E+00 | 4.7E-07 | 3.0E+00 | | 1634044 | Methyl-Tertiary-Bulyl Ether | | 15 | 1.05E-01 | 8.20E+04 | 0.10 | 2.74E+01 | 4.32E-04 | 1.23E+03 | #NUMI | 1.08E-05 | 8 85E-01 | N/A | 2.0E-01 | | 75343 | 1,1-Dichloroethane | | 15
15 | 7.68E-02 | 4.58E+03 | 0.10 | 2.74E+01 | 8.67E-04 | 1.23E+03 | 9.48E+216 | 1 086-05 | 4.96E-02 | N/A | 3.0€+00 | | 156592 | cls-1,2-Dichloroethylene | | 15 | 6.32E-02
7.10E-02 | 1.62E+05 | 0.10 | 2.74E+01 | 4.58E-04 | 1.23E+03 | MUNA | 1.08E-05 | 1,75E+00 | N/A | 5.0E-01 | | 78933 | Butanone, 2- (MEK) | - | 15 | 7.66E-03 | 5 65E+04
N/A | 0.10 | 2.74E+01 | 4.59E-04 | 1,23E+03 | MUM# | 1.08E-05 | 6,12E-01 | N/A | 2.0E-01 | | 71568 | 1,1,1-Trichloroethane | ; | 15 | 2.20E-01 | N/A | 0.10 | 2.74E+01
2.74E+01 | 9 456-04 | 1.23E+03 | 1.18E+153 | 1.08E-05 | N/A | N/A | N/A | | 110627 | Cyclohaxane | ; | 16 | 3.20E-01 | N/A | 0.10 | 2.74E+01 | 4.75E-04
4.85E-04 | 1.23E+03 | 4.36E+304 | 1.08E-06 | N/A | N/A | 2.2E+00 | | 71432 | Benzene | • | 15 | 1.18E-01 | 7.41E+04 | 0.10 | 2.74E+01 | 5.42E-04 | 1.23E+03
1.23E+03 | 3.16E+298 | 1.08E-06 | N/A | #N/A | ANDA | | 79016 | Trichiorpethylene | | 15 | 3.32E-01 | 1.09E+05 | 0.10 | 2.74E+01 | 4.83E-04 | 1.23E+03 | 1.61E+267
3.77E+299 | 1.08E-05 | 8.02E-01 | 7.8E-08 | 3.0E-02 | | 105872 | Methyl cyclohexane | 1 | 15 | 5.38E-01 | 3 35E+08 | 0.10 | 2.74E+01 | 5 98E-04 | 1.23E+03 | 1.50E+242 | 1.08E-05
1.08E-05 | 1.18E+00
3.62E+01 | 1.1E-04
N/A | 4.0E-02 | | 108883 | Toluene | 1 | 15 | 3.64E-01 | 1.28E+05 | 0.10 | 2.74E+01 | 5.34E-04 | 1.23E+03 | 1.10E+271 | 1.08E-05 | 1.39E+00 | N/A | 3.0E+00
4.0E-01 | | 127184 | Tetrachiomethylene | 1 | 15 | 3.10E-01 | 9.19€+04 | 0,10 | 2.74E+01 | 4 39E-04 | 1,23E+03 | MNUM | 1.08E-05 | 9.92E-01 | 5.9E-06 | N/A | | 108907 | Chlorobenzene | 1 | 15 | 4.38E-01 | 3.21E+04 | 0.10 | 2.74E+01 | 4.55E-04 | 1,23E+03 | #NUMI | 1.08E-06 | 3.48E-01 | N/A | 5.0E-02 | | 100414 | Ethylbenzene | 1 | 15 | 7.26E-01 | 2.88E+04 | 0.10 | 2.74E+01 | 4.60E-04 | 1,23E+03 | PNUMI | 1.08E-06 | 2.90E-01 | N/A | 1.0€+00 | | 1330207 | Xylenes | 1 | 15 | 4.82E-01 | N/A | 0.10 | 2.74E+01 | 3.75E-03 | 1.23E+03 | 4.03E+38 | 1,09E-05 | N/A | N/A | 1.0E-01 | | 100426 | Styrene | 1 | 15 | 1.55E+00 | N/A | 0.10 | 2.74E+01 | 4.47E-04 | 1.23E+03 | #NUM! | 1,08E-05 | N/A | #N/A | #N/A | | 96828 | laopropylbenzene | 1 | 15 | 1.66E+01 | N/A | 0.10 | 2.74E+01 | 3.95E-04 | 1,23£+03 | #NUM! | 1.08E-05 | N/A | N/A | 4.0E-01 | | 70345 | 1,1,2,2-Tetrachioroethane | 1 | 15 | 1.87E-01 | N/A | 0.10 | 2.74E+01 | 5.65E-04 | 1.23E+03 | 1.98E+258 | 1.08E-05 | N/A | #N/A | #N/A | | 541731 | Dichlorobenzene, 1,3- | 1 | 15 | 3.40E-01 | 3,19E+04 | 0.10 | 2.745+01 | 2.56E-04 | 1.23E+03 | #NUM | 1.07E-05 | 3.42E-01 | N/A | N/A | | 108467 | 1,4-Dichlorobenzene | 1 | 15 | 1.23E+00 | 6.66E+03 | 0.10 | 2.74E+01 | 4.38E-04 | 1.23E+03 | #NUMi | 1,06E-Q5 | 7,19E-02 | N/A | 8 0E-01 | | 95501 | 1,2-Dichlorobenzene | 11 | 16 | 1,07E-01 | 3,64E+00 | 0.10 | 2.74E+01 | 3.94E-02 | 1.23E+03 | 4.74E+03 | 1.09E-05 | 4.28E-05 | N/A | N/A | | 120821 | 1,2,4-Trichlorobenzene | 1 | 15 | 3.56€+00 | N/A | 0,10 | 2.745+01 | 2.25E-04 | 1.23E+03 | #NUM | 1.07E-05 | N/A | N/A | 2.0E-01 | | 91678 | Benzaldehyde | 11 | 15 | 6.54E-02 | N/A | 0.10 | 2.74E+01 | 1.35E-03 | 1.23E+03 | 2.60E+107 | 1.08E-05 | N/A | #N/A | #N/A | | 92624 | Methylnsphthalene, 2-
Biphenyl, 1,1'- | 1 | 15 | 1.70E+01 | 1,20E+04 | 0.10 | 2.74E+01 | 3.13E-04 | 1 23E+03 | MATAWA | 1.08E-05 | 1.29€-01 | N/A | 3 OE-03 | | 208988 | Acenaphthylene | | 15 | 1.25E+01 | N/A | 0.10 | 2.74E+01 | 3,15E-04 | 1.23E+03 | #NLR# | 1,08E-05 | N/A | N/A | N/A | | 83329 | Acenaphthene | | 16
15 | 0.57E+00
1,42E+01 | 4.31E+02 | 0.10 | 2.745+01 | 3.36E-04 | 1,23E+03 | #NUM | 1.08E-05 | 4,64E-03 | N/A | 3.0E-03 | | 132649 | Dibenzofuren | - | 15 | 1.63E+01 | N/A
1.64E+04 | 0.10 | 2.74E+01 | 7.33E-04 | 1,23E+03 | 2.13E+197 | 1.08E-05 | N/A | N/A | 3.0E-03 | | 85737 | Fluorene | | 15 | 1.63E+01 | 1.64E+04
N/A | 0.10 | 2.74E+01 | 1.68E-04 | 1.23E+03 | MNUM | 1.07E-05 | 1.75E-01 | N/A | N/A | | 85018 | Phenanthrene | ' | 15 | 2.63E+01 | 6.27E+03 | 0.10 | 2.74E+01 | 8.18E-01 | 1.23E+03 | 1.50E+00 | 3.24E-05 | N/A | N/A | 3.0E-03 | | 120127 | Anthracene | <u>-</u> | 15 | 5.90E+01 | N/A | 0.10 | 2.74E+01 | 3.50E-04 | 1.23E+03 | ANUNA | 1.08E-05 | 6.76E-02 | N/A | 3.0E-03 | | C5-C8 | C5-C8 Aliphatics | | 15 | 4.53E+00 | 3.84E+08 | 0,10 | 2 74€+01 | 1.60E-03 | 1.235+03 | 5.14E+80 | 1.08E-05 | N/A | N/A | 3.0E-03 | | C9-C12 | C9-C12 Aliphatica | i | 15 | 3,00E+02 | 5.76E+08 | 0.10 | 2.74€+01 | 3.64E-04 | 1.23€+03 | MUM | 1,08E-05 | 4.14E+03 | N/A | 2.0E-01 | | C9-C10 | C9-C10 Aromatics | 1 | 15 | 3.56E+00 | 1.95E+07 | 0.10 | 2.745+01 | 3,64E-04 | 1.23E+03 | #NUM | 1.08E-05 | 7,29E+01 | N/A | 2.0E-01 | | C9-C18 | C9-C18 Aliphalics | | 15 | 1.36E+03 | 1.55E+08 | 0.10 | 2.74E+01
2.74E+01 | 3.69E-04 | 1.23E+03 | #NUM | 1.08E-05 | 2.10E+02 | _N/A | 5.0E-02 | | C11-C22 | C11-C22 Aromatics | 1 | 15 | 1.00E+01 | 6.23E+06 | 0.10 | 2.74E+01
2.74E+01 | 3.64E-04 | 1.23E+03 | MUNK | 1.08E-05 | 1.70E+03 | N/A | 2.0E-01 | | | - I | | 19 | 1.002101 | V.23C 100 | V.10 | | 4.27E-04 | 1.23E+03 | #NUMI | 1.06E-05 | 6.72E+01 | N/A | 5.0E-02 | Appandix Q.4 Johnson & Ettinger Model - Qual Entry Spreen Inhibitation of Votative from Sel Future Child Recreational Scenario - RME Southwest Prparties, Weels G&H Superfund Sta, Operable Unit 2 Whitney Semi- #### RISK-BASED SOIL CONCENTRATION CALCULATIONS: ## INCREMENTAL PISK CALCULATIONS: | Chemical
GAS No.
(numbers only, | | indoor
erzoauru
eoil
conc.,
cercinogen | Indoor
exposure
soil
conc | Filek-based
indoor
exposure
soil
conc | Soil
esturation
conc.,
C.,, | Final
indoor
socium
soli | | thin from
Vapor
Intrudion to
Indoor sky,
carcinogen | quotient
from vapor
intrusion to
indoor sir.
Toncarcinosen | |---------------------------------------|--|--|--|---|--------------------------------------|-----------------------------------|--------|---|--| | no dashas) | Chemical | (µo/rg) | (µo/kg) | (µg/kg) | (µg/kg) | (µg/kg) | | (unides) | /ioncarcinagen
(unifess) | | 95836 | Yrimstrebenzane, 1.24- | - NA | NA | NA. | 4.356+05 | N/A | 1 | NA. | , NA | | 540590 | Dichioroethylene, 1,2- (lotal) | NA | NA. | - AA | 6.98E+02 | NA. | ł | - NA | NA NA | | 108578
104518 | Trimethybergene, 1,3,5- | NA NA | NA. | NA. | 7 13E+64 | NA | 1 | NA | NA | | 91203 | Nachthalene | NA NA | NA NA | NA
NA | 5.53E+03 | NA | } | NA. | NA NA | | 99676 | Leapropyliolyene, 4- | NA NA | NA NA | NA. | 1,30E+05
7.31E+05 | NA
NA | 4 | NA | 3.4E-04 | | 135988 | Bulylbanzene, sec- | NA. | NA | NA. | 1.10E+08 | NA | j | NA. | NA NA | | 74673
76014 | Chlorometune
Vinul chiorida | NA. | NA | 2 | 1,37E+05 | NA. | 1 | NA | 8.7E-04 | | 74839 | Bromometune | NA
NA | NA NA | NA | 8.33E+05
3.69E+06 | NA
NA | l | 1.2E-07
NA | 1.6E-03 | | 75003 | Ethyl Chloride | . NA | NA NA | NA. | 1,37E+06 | NA . | { | NA NA | 2.7E-06 | | 75354
76131 | 1,1-Olchloroethylene | NA. | NA. | NA. | 8.39E+05 | NA. | } | NA. | 2.6E-04 | | 67641 | Trichlore-1,2,2-triflouroettane, 1,5,2-
Acetane | NA. | NA. | NA
NA | 3,99E+05 | NA | ì | NA. | NA NA | | 75150 | Carbon Disultide | NA | NA. | NA NA | 2.01E+08
8.78E+05 | NA NA | | NA NA | NA
NA | | 79209 | Methyl Acetale | NA. | NA. | NA. | 5.03E+07 | NA NA | | NA NA | NA. | | 75092
155605 | Methylene chloride
trane-1,2-Olchioroethylene | NA
NA | NA. | NA. | 2.96E+06 | N | | 1,6E-09 | 1.3E-06 | | 1634044 | Metry-Tertary-Butyl Ether | NA. | NA
NA | NA
NA | 2.12E+06 | NA
NA | | NA. | 9.8E-05 | | 75343 | 1,1-Dichioroethane | NA. | NA. | NA | 1,42E+07
1,39E+05 | NA. | | NA | 3,76-07
7 8F-05 | | 156592 | cle-1,2-Okthorcetyjene | NA. | NA. | NA. | 9,75E+05
4,63E+07 | NA | | NA. | 6.6E-05 | | 78933
71558 | Butanone, 2- (MEK)
1,1,1-Trichkroethene | NA
NA | NA
NA | NA . | 4,63E+07 | NA | l | NA. | NA | | 110827 | Cyclohecone | NA | NA | <u>\\\\</u> | 6.01E+05
3.88E+05 | NA NA | l | NA NA | NA. | | 71432 | Benzene | NA. | NA I | NA. | 5.74E+05 | NA. | | 1,25-08 | 5.9E-04 | | 70016
108872 | Trichiarostylene
Methyl cycloheune | NA. | NA. | NA. | 6.05E+05 | N/A | | 2.5E-07 | 6.6E-04 | | 108883 | Toluene | NA. | NA NA | NA
NA | 2.96E+04
3.02E+05 | NA
NA | | NA. | 2.7E-04
7.7E-06 | | 127184 | Tetrachicrostwiene | NA. | NÃ. | - NÃ - | 1.08E+08 | NA | | 11E-08 | 7.7E-05 | | 108907
100414 | Chlorobenzene | NA . | NA. | NA NA | 3.04E+05 | NA. | | NA | 1.3E-04 | | 1330207 | Ethyberzene
Xylanes | NA NA | NA
NA | NA
NA | 1,55 5+05 | NA | | NA | 6.5E-06 | | 100425 | Styrene | NA. | NA NA | NA NA | 1,50E+05
6.44E+05 | NA | | NA
NA | NA NA | | 95528 | leopropylbenzene | NA | HA | NA . | 1.06E+08 | NA. | | NA NA | NA. | | 79345
541731 | 1,1,2,2-Tetrachlorosthene
Dichloroberzene, 1,3- | NA. | NA. | | 1.15E+06 | M | | NA. | NA | | 106467 | 1,4-Dichlorobenzers | NA | NA NA | NA NA | 3.82E+04
1.08E+05 | NA. | | NA | NA. | | 95501 | 1,2-Dichicrobenzone | MA | | NA. | B.50E+06 | | | NA NA | 2.0E-06 | | 120821 | 1.2.4-Trichloroburzana | NA. | NA | NA. | 1.135+05 | NA. | | - NA | NA I | | 100527
91578 | Benzsidehyde
Metrytrephihalane, 2: | NA
NA | NA. | NA | 1.74E+00 | NA. | | NA. | NA. | | 92524 | Sistema, 1,1'- | - NA | NA | NA | 8.81E+04 | NA. | | NA
NA | 9.6E-04 | | 205968 |
Acenspheniume | NA. | NA . | NA. | 3.84E+04 | NA | | NA - | 3.4E-06 | | 63329
132648 | Acenaphthene
Olberssäuren | NA NA | NA NA | NA. | 5,09E+04 | HA. | | . NA | NA. | | B6737 | Fluorene | NA NA | NA NA | NA NA | 1,55E+05
2,97E+04 | NA
NA | | NA
NA | NA. | | 6501B | Phonombrone | NA. | NA . | NA. | 3.64E+04 | NA. | | NA. | 5.0E-04 | | 120127
C5-C8 | Antivacene
C6-C8 Almination | NA NA | NA | HA | 2,57E+03 | NA. | | NA
NA | NA. | | CD-C12 | C9-C12 Allohatica | NA. | NA NA | NA
NA | 7,800 +07 | NA. | | NA
NA | 4.5E-01 | | CP-C10 | C9-C10 Aromatice | , NA | NA. | NA | 2.12E+07
1.02E+08 | - 10 | | | 8.1E-03
9.3E-02 | | C9-C18
G11-C22 | CP-C18 Alphalics | NA . | NA. | NA | 1,365,+07 | NA. | | NA . | 1.96-01 | | 011-022 | C11-C22 Aromatos | NA | NA | NA. | 6.92E+07 | NA. | | NA | 3.06-02 | | | | | | | | | | 95% UCL | | | | | | | | | | | Cancer | 85% UCL | | | | | | | | | | Risk | Hr | | | | | | | | | TOTAL: | 4E-07 | 7.9E-01 | | | | | | | | | | |]= Cancer risk > 1 | | | | | | | | | | <u> </u> | or HQ/HI>1E+00 | | | Trimetiniterroses, 1,2,4- | MESSAGE: Sall | conc. 🕶 saturado | n (Ceat), Riek/I | betalooks DH | et Cest. | | | 41 1 W 11 1 1 C 1 C 1 | | | Dichloroety/lene, 1.2- (lutal)
Trimelhylbengene, 1.3.5- | MESSAGE: 808 | cono. >= unturnito
cono. >= esturatio | n (Cast), Risk/I | 40 calculated | et Cost. | | | | | | n-Butytownsone | MESSAGE Sof | CENC. >= SEN/ASQ | n (Cast), Risk/ | nu cacquagg.
10 calculated | et Cast. | | | | | | Naphthaiere | | | | | | | | | | | Incorrepylicitative, d-
Butylburcame, enc- | MESSAGE: Sol | CONG. >4 AMANAGO | * (Ceat). Riet/ | C calculated | et Cast. | | | | | | Chloromethene | HICOGAUE: SOI | conc. == saluratio | n (SAM), MAK/ | THE GROWING | E CARL | | | | | | Vinvi chloride | | | | | | | | | | | Bromomethane
Ethyl Chloride | MESSAGE: Soll | conc. >= sakrašo | n (Cast), Riek/I | HQ calculated | at Cost. | | | | | | 1.1-Dichloroelmiene | | | | | | | | | | | Trichiaro-1,2,2-tiflourosthane, 1,1,2- | MESSAGE: Sol | cono. >= estureto | n (Cast), Riekf | 10 calculated | at Cost | | | | | | Acetone | | | | | | | | | | | Carbon Disulfide
Methyl Acetate | MESSAGE SOL | cono. >= suturatio | n (Ceat). Riek/i | (C) calculated | et Const. | | | | | | Methylane chicride | MESSAGE: SOI | cono. >= saturado | n (Cast). Riek/i | 4C) calculated (| at Coat. | | | | | | trans-1,2-Dichlorpethylene | | | | | | | | | | | Methyl-Tertieny-Butyl Ether
1,1-Dichloroethane | | | | | | | | | | | cie-1.2-Dichigrosthylene | | | | | | | | | | | Butanone, 2- (MEK) | MESSAGE: Sof | cono, == saturado | n (Coul). Right | (O calculated | H Chit | | | | | | 1,1,1-Trichloroethane | MESSAGE Sol | conc. >= eaturatio | n (Cest), Riek/s | (Controllers) | et Casat. | | | | | | Cyclohecene | MESSAGE SOI | conc. >= sabutadio | A (Caral), Right | O caicolated of | of Card | | | | Accende C.4. Johnson & Richard Hodel - Onle Sintry Screen Inhalaction of Volatilies from Soll Future Chief Repressional Bosonsto - CT Southwest Promision. Water Old-Househand Statistics of Southwest Promision. CALCULATE RISK-BASED BOIL CONCENTRATION (enter "X" in "YES" too; SL-SCREEN Vereion 2.3, 03/01 YES OR CALCULATE INCREMENTAL RIBKS FROM ACTUAL BOIL CONCENTRATION (enter "x" in "YES" box and initial and conc. below | | Enser mital sali ca | ncenimizm. | ENTER
Depn | BATTER | EMTER | ENTER | | ENTER | i | | | | | | | | | | , | | |--------------------|--|----------------------|--------------------------|-------------------|-----------------|-------------------|--|--------------------|---------------------|----------------------|----------------------|--|--------------|--------------------|-------------|------------|-----------|--------------|--------------------|------------------------| | ENTER | | ENTER | below prede | | | Value are | | User-defend | ENTER
Vedes sons | ENTER
Vaccor 2004 | ENYER
Vadose 200s | ENTER
Vadom 700a | ENTER | ENTER
Averaging | ENTER | ENTER | ENTER | ENTER | ENTER | ENTER
Yarnet hazerd | | Chamical | | Magn
Ball | to bottom
of enclosed | Charles to the | Averages | 5G5
acti Note | | acil vecci | edidy | soil lotei | act water-filed | sol croanic | time for | (krys for | Egyptote | Except | Exposure | Coversion | rhalt for | cuction icr | | CAS No. | | conc | space foor. | of contemination. | temperature. | funed to entirent | • OA | Dermesbility. | bulk density. | porophy. | pomety, | carbon traction, | carolnooens, | noncertinopene. | duration. | treatment. | time | fector | cardinocene. | RECORDERATE. | | (ग्यामध्यम् समेर् | | GR | le . | ш | T _{de} | soj vabo. | | Κ. | _ ^~` | r.v | 8, | <u>. </u> | ATC | ATNC | ED | EF . | F | CF . | TF | тна | | no destree) | Chemical | (vg*g) | (15 or 200 cm) | (cm) | (°C) | portugation() | - ^{740te} | (cm ₂) | (p/cm²) | (uni(444) | (am²/am²) | (unitions) | (971) | (Arte) | (479) | (C##44) | (hrs/day) | (Jung-jer) | (unitions) | (unitions) | | 10434 | Trimethylbenzene, 1,2,4- | | 16 | 15 | 10 | LS | 7 , F | | | 0.43 | 0.3 | 0.002 | 70 | 2 | 2 | 26 | 2.5 | 8760 | 1.05-06 | Ϋ́ — — | | Section | Dichloroethylene, 1,2- (total) | 1 | 16 | 15 | 10 | LE | 111 | | 15 | 0.43 | 0.3 | 9.002 | 70 | 2 | 2 | 28 | 2.5 | 8760 | 1.0E-06 | | | 100076 | Trimethylbenzene, 1,3,5 | İ | 16 | 15 | 10 | is | T''', | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 2 | 2 | 26 | 2.5 | 8760 | 1 0E-06 | | | 194510 | n-Bulytoenzene | | 16 | 16 | 10 | LS . | 11 | | 1.6 | 0.43 | 0.5 | 9.902 | 70 | 2 | 2 | 26 | 2.5 | 8760 | 1.0E-06 | | | #13#4 | Naphthalane | 2.74E+03 | 16 | 15 | 10 | L6 | 1 | ···· | 1.8 | 0.43 | 0.3 | 0 002 | 70 | 2 | 2 | 26 | 2.5 | 8760 | 1.0E-06 | ↓ | | tma74 | laopropytoluene, 4- | | 16 | 15 | 10 | LS | 1 | | 1.6 | 0 43 | 03 | 0 002 | 70 | 2 | 2 | 26 | 2.6 | 8760 | 1 0E-06 | + | | 130050 | But/Ibenzere, eec- | 2.49€+02 | 15 | 13 | 10 | LS | | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 2 | 2 | 76 | 2.6 | 8760
8760 | 1.0E-08 | + | | 74473
79014 | Chloromethane
Vinyl chloride | 2.61E+02 | 18 | 15 | 10 | - LB | [| | 15 | 0.43 | 03 | 0.002 | 70 | 2 | - | 28 | 2.5 | 8760
8760 | 1.06-08 | + + - | | 74636 | Bramomethine | 1.0.1 | 15 | 15 | 10 | LS | 1 1 1 | | 13 | 0.43 | 03 | 0002 | 70 | | | 26 | 2.6 | 8760 | 1.06-08 | - | | 79063 | Ethyl Chloride | 8,60E+01 | 16 | 15 | 10 | LB | | | 1.6 | 0.43 | 0.3 | 0 902 | 70 | 2 | | 26 | 7.5 | 8780 | 1.0E-08 | | | 75304 | 1.1-Dichloroethylene | 6.34E+01 | 75 | 15 | 10 | LS | 1 - 1 | - | 15 | 0.43 | 0.3 | 0.002 | 70 | 2 | 2 | 26 | 2.6 | 8750 | 1 0E-06 | 1 1 | | 70121 | Trichingo 1.2.2-iritina enerthene. 1.1.2. | | 18 | 15 | 10 | .6 | 13 | | | 0.43 | 9.5 | 0 000 | 70 | ž | 1 | 26 | 2.5 | 6760 | 1.0€-06 | 1 | | 47611 | Acetone | 3.24E-02 | 15 | 15 | 19 | Ls | 1.4 | | 1.5 | 0.43 | 03 | 0 002 | 70 | 2 | 2 | 20 | 2.\$ | 6760 | 1.0E-05 | } - | | 7114 | Carbon Disulfide | | 15 | 15 | 10 | LB | 1 | | 1.6 | 0.43 | 0.3 | 0 002 | 70 | 2 | | 76
26 | 2.5 | 6760
8760 | 1.0E-06 | | | 7000
71001 | Methyl Acetele
Methylene chloride | 7.27E+02 | 16 | 15 | 10 | L6 | + | | 1.6 | 0.43 | 03 | 0.002 | 70 | 2 | | 26 | 25 | 8780 | 1.0E-06 | +-;1 | | 79061
130608 | trans-1.2-Dichloroethylene | 7.73E+01 | 15 | 15 | 16 | LS | +++ | | 1.6 | 0.43 | 03 | 0.002 | 70 | | 2 | 26 | 2.5 | 8780 | 1,0E-08 | | | 1000 | Metry-Tortary-Butyl Ether | 5.75E+01 | 16 | 15 | 10 | LB | + ; + | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | | | 28 | 2.5 | 8780 | 1 0E-06 | + | | 76341 | 1,1-Dichioroethane | 3.56E+02 | 16 | 15 | 10 | 13 | 1.1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | - 2 | 2 | 26 | 2.6 | 8760 | 1 0E-68 | 1 | | 198947 | cia-1.2-Dichlorosthylene | 1.80E+02 | 15 | 15 | 10 | 1.8 | 1:1 | | 1,5 | 0.42 | 03 | 0.002 | 70 | | ****** | 26 | 2.5 | 8780 | 1 0E-08 | 1 | | 70033 | Sutunione, 2- (MEX) | | 15 | 15 | 10 | LS | 1 | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | | 2 | 28 | 2.6 | 8780 | 1 0€-08 | 1 | | 7166 | 1,1,1-Trichlorosthune | | 15 | 15 | 10 | LB | 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 3 | 2 | 26 | 2.5 | 8780 | 1 0E-08 | 1 | | 110027 | Cyclohevane | | 15 | 18 | 10 | Ų5 | 1 | | 1.5 | 0 43 | 0.5 | 0.002 | 70 | 2 | 2 | 218 | 25 | 5750 | 1.0E-0d | 1 | | FIGE | Benzene | 8.08E+01 | 15 | 15 | 10 | i is | 1.1 | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 2 | 2 | 28 | 2.5 | 8760 | 106-08 | 1 ! | | 75014 | Trichloroethylene | 2016-02 | 15 | 15 | 10 | U.B | 1-1-1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 2 | 2 | 26 | 2.5 | 8780 | 1.0E-08
1.0E-08 | | | 106177 | Methyl cyclohexane | 4.49E+02 | 15 | 13 | 10 | 1.5 | 1 | | 1.5 | 0.43 | 03 | 0.002 | 70 | 2 2 | - 2 | 26 | 2.5 | 8760
8760 | 1.05-06 | + ; - | | 19665 | Toluene
Tetrachignosthylene | 1 47E+02 | 15 | 16 | 10 | 18 | 1 | | 1.5 | 0.43 | 0.3 | 0.002 | | 2 | | 28 | 2.5 | 8763 | 1.0E-06 | + | | 1271 | Chlorobertzere | 3.11E+02 | 19 | 15 | 10 | - iš | ╫ | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 2 | 2 | 26 | 2.6 | 8760 | 1.0E-06 | | | 100414 | Ethybenzene | 1 B4E+02 | 15 | 16 | 10 | LS | 11 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 2 | 2 | 26 | 2.5 | 8760 | 1.DE-08 | | | (33004) | Xylanes | 1 | 16 | 16 | 10 | LS. | 1 | • | 15 | 0.43 | 0.9 | 0.002 | 70 | 2 | 2 | 26 | 2.5 | 8760 | 1.0E-06 | | | 400428 | Styrame | | 15 | 13 | 10 | Le | 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 2 | 2 | 26 | 25 | 8760 | I 0€-08 | 1 | | MATE | iscoropytenzene | | 15 | 16 | 10 | l S | 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 76 | 2 | 2 | 28 | 2.5 | 8760 | 1.0E-06 | | | 710-4 | 1,1,2,2-Tetrachlorgethane | 1 | 15 | 15 | 10 | re | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 1,5 | 043 | 0.3 | 0.002 | 70 | 7 | 2 | 26 | 2.6 | 8760 | 1.0E-06 | 1 | | HIDT | Dichlorobersone, 1,3- | 1 00E+02 | 18 | 16 | 10 | Les | 1,1 | | 1.5 | 0.43 | 0.8 | 0.002 | 70 | 2 | 2 | 26 | 2.5 | 8760 | 1.0E-06 | | | CAMP . | 1,4-Dichlorobenzene
1,2-Dichlorobenzene | 2 80E+02
8.10E+01 | 18 | 16 | 10 | L8 | 1 | | 1.5
| 0.43 | 0.3 | 0.002 | 70
70 | 2 | 2 | 26 | 2.5 | 6760
6760 | 1.0E-06 | | | philips
Sanatri | 1,2,4-Trichicrobergone | 4.106.101 | 1 | 15 | (0 | 2) | +++ | | 1.5 | 0.43 | 9.3 | 0.002 | 70 | 2 | 1 | 26 | 25 | 6760 | 1.06-08 | + ; - | | 10027 | Benzeldehyde | + | 16 | 16 | 10 | Lis . | 1 ; 1 | | 1.5 | 0.43 | 0.3 | 9.002 | 70 | 2 | 1 2 | 26 | 2.5 | 8760 | 1 0E-06 | - | | P 271 | Methylmethialene, 2- | 5.41E+03 | 15 | 15 | 10 | ES | +++ | | 1.5 | 0.43 | 0.3 | 3 302 | 70 | 2 | 2 | 54 | 75 | 8760 | 1.0E-08 | 1 | | 10634 | Sigheryl, 1,1'- | | 15 | 15 | 10 | 1.5 | 1 | | 15 | 0.43 | 0.3 | 0 002 | 70 | 2 | 2 | 26 | 2.5 | 8760 | 106-08 | 1 | | page-14 | Acensphthylene | 4.00E+02 | 18 | 16 | 10 | L8 | 1 7 1 | | 18 | 0.43 | 0.3 | 0 002 | סל | 2 | 2 | 26 | 2.5 | 8760 | 1 0€-08 | 1 | | 1,000 | Acensphthene | | 15 | 18 | 10 | LS | 11 | | 15 | 0.43 | 0.3 | 0.005 | 70 | 2 | 2 | 26 | 2.5 | 8780 | 1 0E-04 | 1 | | 132646 | Dibenzofuran | 1.79E+03 | 18 | 16 | 10 | LĖ | 11 | | 1.6 | 0.43 | 0.5 | 0.002 | 70 | 2 | 2 | 26 | 2.5 | 8760 | 1 0E-08 | | | भरेग | Fluorene | 1 | 15 | 18 | 10 | L8 | 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 5 | 2 | 26 | 2.5 | 8780 | 1.06-06 | + | | 14041 | Phenantivene | 3.66E+04 | 15 | 16 | 10 | LB | 11 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 2 | 2 | 26 | 25 | 8760
6750 | 1 0E-08 | | | 170127 | Anthrecene | 9.63E-04 | | | 10 | 18 | +++ | | 18 | 0.43 | 0.3 | 0.002 | 70 | 2 | 2 | 26 | 25 | 6760 | 1.06-08 | | | 01-01 | C5-C8 Allohatica
C9-C12 Allohatica | 6.11E404 | 16 | 15 | 10 | LS | +++ | | 13 | 0.43 | 03 | 0.002 | 70 | | | 26 | 2.5 | 8780 | 1.06-08 | + ; | | GE-C13 | C9-C10 Aromatics | 4.316+08 | 18 | - ii | 10 | (8 | + ; + | | 1.5 | 0.43 | 0.3 | 5.002 | 70 | 2 | 2 | 26 | 2.5 | 8780 | 7.0E-06 | | | 04-014 | C9-C18 Alphatics | 9.28E+06 | 16 | 16 | 10 | LŠ | 1 7 1 | | 1.5 | 0.43 | 03 | 0.002 | 70 | - 2 | - 2 | 78 | 25 | 8760 | 1.02-06 | + | | CIICE | C11-C22 Arematica | 9.24E+06 | 15 | 15 | 10 | LS | + | - | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 2 | 3 | 26 | 2.5 | 8780 | 1 DE-06 | Appendix C.4 Johnson & Ettinger Model - Data Entry Screen inhalation of Volatiles from Soil Future Child Recreational Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Whitney Barrel | Chemical
CAS No.
(numbers only,
no dashes) | Chemical | Diffusivity in air, C (cm²/s) | Diffusivity
in water,
D _w
(cm ² /s) | Henry's
law constant
at reference
temperature,
H
(atm-m³/mol) | Henry's
law constant
reference
temperature,
T _R
(°C) | Enthalpy of
vaporization at
the normal
boiling point,
$\Delta H_{v,b}$
(cal/mol) | Normal
bolling
point,
T _B
(°K) | Critical
temperature,
T _C
(°K) | Organic
carbon
partition
coefficient,
K _{oc}
(cm ³ /g) | Pure
component
water
solubility,
S
(mg/L) | Unit
risk
factor,
URF
(µg/m³) ⁻¹ | Reference
conc.,
RfC
(mg/m³) | Physical
state at
soil
temperature,
(S,L,G) | |---|----------------------------------|-------------------------------|--|--|--|---|---|--|---|--|---|---------------------------------------|---| | 1.0 000.007 | | ****** | .,, | | | | | | | <u> </u> | | | | | 95636 | Trimethylbenzene, 1,2,4- | 7.80E-02 | 9.03E-06 | 5.70E-03 | 25 | 1.25E+03 | 442.30 | 649.11 | 3.72E+03 | 5.70E+01 | N/A | 6.0E-03 | | | 540590 | Dichloroethylene, 1,2- (total) | 5.59E-02 | 6.47E-06 | 4,30E-04 | 20 | 1.32E+03 | 585.00 | 877.50 | 1,28E+02 | 1.30E+00 | #N/A | #N/A | 0.0E+00 | | 108678 | Trimethylbenzene, 1,3,5- | 6.48E-02 | 7.86E-06 | 7.81E-03 | 25 | 1.25E+03 | 442.30 | 649.11 | 1.67E+03 | 2.00E+01 | N/A | 6.0E-03 | L | | 104518 | n-Butylbenzene | 7.25E-02 | B,39E-06 | 1.25E-02 | 25 | 1,23E+03 | 456.00 | 684,00 | 2.51E+03 | 1,26E+00 | #N/A | #N/A | | | 91203 | Naphthalene | 5.90E-02 | 7.50E-06 | 4.83E-04 | 25 | 1.04E+04 | 491.14 | 748.40 | 2.00E+03 | 3.10E+01 | N/A | 3.0E-03 | s | | 99876 | Isopropyltoluene, 4- | 7.25E-02 | 6.39E-06 | 8.60E+00 | 25 | 1.24E+03 | 450.10 | 652.04 | 1.58E+03 | 2.34E+01 | N/A | 4.0E-01 | <u>-</u> | | 135988 | Butylbenzene, sec- | 8.00E-02 | 8.00E-06 | 1.67E-02 | 25 | 1.24E+03 | 446.65 | 669,98 | 3,11E+04 | 1,76E+01 | #N/A | #N/A | 0.0E+00 | | 74873 | Chloromethane | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1.35E+03 | 249.00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 9.08-02 | 0.0E+00 | | 75014 | Vinyl chloride | 1.06E-01 | 1.23E-05 | 2.71E-02 | 25 | 5.25E+03 | 259,25 | 432.00 | 1.86E+01 | 2.76E+03 | 8.8E-06 | 1.0E-01 | 1 | | 74839 | Bromomethane | 7.28E-02 | 1.21E-05 | 6.22E-03 | 25 | 5.49E+03 | 276.50 | 414.75 | 1,43E+01 | 1,52E+04 | N/A | 5.0E-03 | 0.0E+00 | | 75003 | Ethyl Chloride | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1.36E+03 | 249.00 | 373.50 | 1,43E+01 | 5.32E+03 | N/A | 1.0E+01 | L | | 75354 | 1,1-Dichloroethylene | 9.00E-02 | 1.04E-05 | 2.61E-02 | 25 | 6,25E+03 | 304.75 | 576.05 | 5.89E+01 | 2.25E+03 | N/A | 2.0E-01 | | | 76131 | Trichloro-1,2,2-trifiouroethane, | 2.88E-02 | 8.07E-06 | 5.17E-01 | 25 | 1.33E+03 | 320.70 | 481.05 | 2.25E+02 | 2.202.700 | N/A | 3.0E+01 | 0.0E+00 | | 76131 | | 2.006-02 | 0.072400 | 3.17E-01 | 20 | 1.332403 | 320.70 | 481.03 | 2.201.02 | 1.70E+02 | 1975 | 3.02.01 | 0.02.00 | | 67641 | 1,1,2-
Acetone | 1.24E-01 | 1.14E-05 | 3.88E-05 | 25 | 6.96E+03 | 329.20 | 50B.10 | 5.75E-01 | 1,00E+06 | N/A | N/A | | | 75150 | Carbon Disulfide | 1.04E-01 | 1.14E-05 | 1.27E-02 | 25 | 6.39E+03 | 319,00 | 552.00 | 5.14E+01 | 2.67E+03 | N/A | 7.0E-01 | | | 79209 | Methyl Acetate | 1.04E-01 | 1.00E-05 | 1.13E-04 | 25 | 1,31E+03 | 365.00 | 547.50 | 3.32E+00 | 2.43E+05 | #N/A | #N/A | 0.0E+00 | | 75092 | | 1.04E-01 | 1.17E-05 | 2.19E-03 | 25 | 6.71E+03 | 313.00 | 510.00 | 1.17E+01 | 1.30E+04 | 4.7E-07 | 3.0E+00 | - 0.0L100 | | 156605 | Methylene chloride | 7.07E-02 | 1.17E-05 | 9,39E-03 | 25 | 1.33E+03 | 320.85 | 516.50 | 5.25E+01 | 6.30E+03 | N/A | 2.0E-01 | | | | trans-1,2-Dichloroethylene | | | | 25 | | 328.36 | 497.11 | 3.84E+01 | 5.10E+04 | N/A | 3.0E+00 | | | 1634044 | Methyl-Tertiary-Butyl Ether | 1.02E-01 | 1.05E-05 | 5.87E-04 | | 1.32E+03 | | | 3.16E+01 | 5.06E+03 | N/A | 5.0E-01 | | | 75343 | 1,1-Dichloroethane | 7.42E-02 | 1.05E-05 | 5.61E-03 | 25 | 6.90E+03 | 330.55 | 523.00 | 3.55E+01 | 3.50E+03 | N/A | 2.0E-01 | - | | 156592 | cis-1,2-Dichloroethylene | 7.36E-02 | 1.13E-05 | 4.07E-03 | 25 | 7.19E+03 | 333.65 | 544.00 | | | N/A | | 0.0E+00 | | 78933 | Butanone, 2- (MEK) | 8.08E-02 | 9.80E-06 | 5.60E-05 | 25 | 1.31E+03 | 352.50 | 528.75 | 3,83E+00 | 2.23E+05
1.33E+03 | N/A | N/A
2.2E+00 | 0.0E+00 | | 71556 | 1,1,1-Trichloroethane | 7.80E-02 | 8.80E-06 | 1.72E-02 | 25 | 7.14E+03 | 347.24 | 545.00 | 1.10E+02 | | | | 205.00 | | 110827 | Cyclohexane | 8.00E-02 | 9.002-08 | 2.00E+00 | 25 | 1.31E+03 | 353.85 | 530.78 | 1.60E+02 | 5.50E+01 | #N/A | #N/A | 0.0E+00 | | 71432 | Benzene | 8.80E-02 | 9.80E-06 | 5.56E-03 | 25 | 7,34E+03 | 353.24 | 562.16 | 5,89E+01 | 1.75E+03 | 7.8E-06 | 3.0E-02 | | | 79016 | Trichloroethylene | 7.90E-02 | 9.10E-06 | 1.03E-02 | 25 | 7.51E+03 | 360.36 | 544.20 | 1,66E+02 | 1.10E+03 | 1.1E-04 | 4.0E-02 | | | 108872 | Methyl cyclohexane | 9.86E-02 | 8.52E-06 | 4.23E-01 | 25 | 1,30E+03 | 373.90 | 560.85 | 2.68E+02 | 1.40E+01 | N/A | 3.0E+00 | | | 108883 | Toluene | 8.70E-02 | 8.60E-06 | 6,63E-03 | 25 | 7.93E+03 | 383,78 | 591.79 | 1.82E+02 | 5.26E+02 | N/A | 4.0E-01 | | | 127184 | Tetrachloroethylene | 7.20E-02 | 8.20E-06 | 1.84E-02 | 25 | 8.29E+03 | 394,40 | 620.20 | 1.55E+02 | 2.00E+02 | 5.9E-06 | N/A | L L | | 108907 | Chlorobenzene | 7.30E-02 | 8.70E-06 | 3.71E-03 | 25 | 8.41E+03 | 404.87 | 632,40 | 2.19E+02 | 4.72E+02 | N/A | 6.0E-02 | | | 100414 | Ethylbenzene | 7.50E-02 | 7.80E-06 | 7.88E-03 | 25 | 8.50E+03 | 409.34 | 617.20 | 3.63E+02 | 1.69E+02 | N/A | 1.0E+00 | <u></u> | | 1330207 | Xylenes | 7.69E-02 | 8,44E-06 | 6.73E-06 | 25 | 1.26E+03 | 417.40 | 616.21 | 2.41E+02 | 2.20E+02 | N/A | 1.0E-01 | ļ <u>-</u> | | 100425 | Styrene | 7.10E-02 | 8.00E-06 | 2,76E-03 | 25 | 8.74E+03 | 418.31 | 636.00 | 7.76E+02 | 3.10E+02 | #N/A | #N/A | ļ | | 98828 | Isopropylbenzene | 6.50E-02 | 7.83E-06 | 1.47E-02 | 25 | 1.26E+03 | 425.40 | 631.01 | 9.31E+03 | 5.60E+01 | N/A | 4.0E-01 | L L | | 79345 | | 7.10E-02 | 7.90E-06 | 3.44E-04 | 25 | 9.00€+03 | 419.60 | 661,15 | 9.33E+01 | 2.97E+03 | #N/A | #N/A | <u> </u> | | 541731 | Dichlorobenzene, 1,3- | 4.14E-02 | B.85E-06 | 4.70E-03 | 25 | 1.24E+03 | 446.00 | 683.96 | 1.70E+02 | 6.88E+01 | N/A | N/A | | | 106467 | 1,4-Dichlorobenzene | 6.90E-02 | 7.90E-06 | 2.43E-03 | 25 | 9.27E+03 | 447.21 | 684.75 | 6.17E+02 | 7.38E+01 | N/A | 8.0E-01 | s | | 95501 | 1,2-Dichlorobenzene | 6.88E-02 | 9.41E-06 | 1.62E-06 | 25 | 9.70E+03 | 465.00 | 697.50 | 5.34E+01 | 2.77E+04 | N/A | N/A | \$ | | 120821 | 1,2,4-Trichlorobenzene | 3.00E-02 | 8.23E-06 | 1.42E-03 | .25 | 1.05E+04 | 486.15 | 725.00 | 1.78E+03 | 3.00E+02 | N/A | 2.0E-01 | 205.00 | | 100527 | Benzaldehyde | 7.30E-02 | 9.07E-06 | 2.62E-05 | 25 | 1.24E+03 | 452.00 | 678.00 | 3.27E+01 | 6.57E+03 | #N/A | #N/A | 0.0E+00 | | 91576 | Methylnaphthalene, 2- | 4.64E-02 | 7,75E-06 | 1.01E-03 | 25 | 1.17E+03 | 514.05 | 761.01 |
B.51E+03 | 2.46E+01 | N/A | 3.0E-03 | S | | 92524 | Biphenyl, 1,1'- | 4.04E-02 | 8.15E-06 | 3.03E-04 | 25 | 1,15E+03 | 529.10 | 793.65 | 6.25E+03 | 6.94E+00 | N/A | N/A | 0.0E+00 | | 208968 | Acenaphthylene | 4.43E-02 | 7.44E-06 | 2.80E-04 | 25 | 1.12E+03 | 553.00 | 792.01 | 4.79E+03 | 3.93E+00 | N/A | 3.0E-03 | S | | 83329 | Acenaphthene | 4.21E-02 | 7.69E-06 | 1.55E-04 | 25 | 1.22E+04 | 550.54 | 803.15 | 7.08E+03 | 4.24E+00 | N/A | 3.0E-03 | S | | 132649 | Dibenzofuran | 2.67E-02 | 5.93E-08 | 4.00E-03 | 25 | 1.11E+03 | 559.00 | 824.01 | B.13E+03 | 1.00E+01 | N/A | N/A | s | | 86737 | Fluorene | 3.63E-02 | 7.88E-08 | 9.41E-08 | 25 | 1.27E+04 | 570.44 | 870.00 | 7.71E+03 | 1.90E+00 | N/A | 3.0E-03 | S | | 85018 | Phenanthrene | 3,30E-02 | 7.47E-06 | 1.30E-04 | 25 | 1.06E+03 | 613.00 | 869.01 | 1.41E+04 | 1.28E+00 | N/A | 3.0E-03 | S | | 120127 | Anthracene | 3.24E-02 | 7.74E-08 | 6.51E-05 | 25 | 1.31E+04 | 615.18 | 873,00 | 2.95E+04 | 4.34E-02 | N/A | 3.0E-03 | S | | C5-C8 | C5-C8 Aliphatics | 6.00E-02 | 1.00E-05 | 1.30E+00 | 25 | NA NA | NA. | NA . | 2.27E+03 | 1.10E+04 | N/A | 2.0E-01 | S | | C9-C12 | | 6.00E-02 | 1,00E-05 | 1.56E+00 | 25 | NA NA | NA. | NA | 1.50E+05 | 7.00E+01 | N/A | 2.0E-01 | S | | C9-C10 | | 6.00E-02 | 1.00E-05 | 7.92E-03 | 25 | NA | NA NA | NA | 1.78E+03 | 5.10E+04 | N/A | 5.0E-02 | S | | C9-C18 | C9-C18 Aliphatics | 6.00E-02 | 1.00E-05 | 1.66E+00 | 25 | NA NA | NA | NA | 6.80E+05 | 1.00E+01 | N/A | 2.0E-01 | S | | C11-C22 | C11-C22 Aromatics | 6.00E-02 | 1.00E-05 | 7.32E-04 | 25 | NA | NA | NA | 5.00E+03 | 5.80E+03 | N/A | 5.0E-02 | S | Appendix C.4 Johnson & Ettinger Model - Dista Entry Screen Inhalation of Votalities from Soli Future Child Recreational Scenario - CT Southwest Prparties, Wells G&H Superfund Ske, Operable Unit 2 Whitney Berrel | | | Source-
building
separation. | eoil
air-filled
porosity, | effective
total fluid
saturation. | Vadose zone
apil
intrinsic
permeability. | Vadose zone
soli
relative air
permeability, | Vadose zone
soil
effective vapor
permeability. | Floor-
well
seam
perimeter, | Initial soil
concentration | Bidg.
ventitation | enclosed
space
below | Crack-
lo-total
area | Crack
depth
below | Enthalpy of
reportzellon a
eve. soil | ave. soil | Henry's law
constant at
ave, soil | Vapor
viscosity at
ave. soil | zone
effective
diffusion | |------------------|--|--|---------------------------------|---|---|--|---|--------------------------------------|-------------------------------|----------------------|----------------------------|----------------------------|-------------------------|--|----------------------------------|---|------------------------------------|--------------------------------| | (numbers only. | | LT | 9.V | 8. | parmenty, | k _m | рентиварику, | Xcrack | used,
CR | rale, | grade. | retio, | grade, | temperalure, | | lemperature, | lemperature. | coefficient, | | no dashes) | Chemical | (cm) | (cm³/cm³) | (cm³/cm³) | (cm²) | (cm²) | (cm²) | (cm) | (μg/kg) | (போ ³ /த) | A _e
(cm²) | η
(unitiess) | Z
(cm) | ∆H _{v,Tg}
(cal/mol) | H _{rit}
(atm-m³/mol) | HTS
(unitless) | μ _{τσ} | D ^{aB} v
(cm²/a) | | | | | • | | | (| ,, | (GIII) | (1-B-1-S) | | (See) | [uniness) | (CHI) | (Calzinoi) | fertiles missi | [numens) | (g/cm-s) | (cm /a) | | 95636 | Trimethylbenzene, 1,2,4- | 1 | 0.130 | 0.859 | 1.62E-08 | 0,390 | 8.33E-09 | 1,72E+04 | 4.36E+05 | 2.52E+06 | 9 50E+08 | 1.30E-04 | 15 | 1.55E+03 | 4.96E-03 | 2.13E-01 | 1 75E-04 | 4.77E-04 | | 540590 | Oichloroethylene, 1,2- (Iotal) | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6 33E-09 | 1.72E+04 | 5.96E+02 | 2.52E+08 | 9 50E+08 | 1,30E-04 | 15 | 1.73E+03 | 3.87E-04 | 1.67E-02 | 1 75E-04 | 3.77E-04 | | 108678
104518 | Trimethylbenzene, 1,3,5- | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1 72E+04 | 7.13E+04 | 2.52E+08 | 9 50E+06 | 1.30E-04 | 15 | 1.55E+03 | 6.80E-03 | 2.93E-01 | 1 75E-04 | 3.95E-04 | | 91203 | n-Butylbanzene
Naphthalene | | 0.130 | 0.659 | 1.62E-08 | 0.360 | 8 33E-09 | 1 72E+04 | 6.63E+03 | 2.52E+06 | 9 50E+08 | 1.30E-04 | 15 | 1 53E+03 | 1,09E-02 | 4.09E-01 | 1 75E-04 | 4 41E-04 | | 99878 | Isopropylloluene, 4- | 1 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 8.33E+09 | 1.72E+04 | 2.74E+03 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1.28E+04 | 1.52E-04 | 6.55E-03 | 1 75E-04 | 4.70E-04 | | 135988 | Bulyibenzene, sec- | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09
6.33E-09 | 1.72E+04
1.72E+04 | 7.31E+06
1.10E+08 | 2.52E+06 | 9.50E+06 | 1,30E-04 | 15 | 1 57E+03 | 7.48E+00 | 3.22E+02 | 1 75E-04 | 4.39E-04 | | 74873 | Chloromethane | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.49E+02 | 2.52E+06
2.52E+06 | 9.50E+05
9.50E+06 | 1.30E-04
1.30E-04 | 15 | 1.53E+03 | 1.46E-02 | 6.27E-01 | 1 75E-04 | 4 66E-04 | | 75014 | Vinyl chloride | 1 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.61E+02 | 2.52E+08 | 9.50E+05 | 1.30E-04 | 15
15 | 1.20E+03
5.00E+03 | 7.79E-03
1.73E-02 | 3.35E-01
7.46E-01 | 1.75E-04
1.75E-04 | 7.68E-04
6.44E-04 | | 74639 | Bromomethane | 1 | 0.130 | 0.669 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 3.69E+08 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 5.39E+03 | 3 B4E 03 | 1.65E-01 | 1.75E-04 | 4 48E-04 | | | Ethyl Chloride | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 8 60E+01 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1.20E+03 | 7.78E-03 | 3.35E-01 | 1.75E-04 | 7.88E-04 | | 75354 | 1,1-Dichioroethylene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 6 34E+01 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 6.39E+03 | 1.47E-02 | 6.34E-01 | 1.75E-04 | 5 47F-04 | | 76131
67641 | Trichloro-1,2,2-triflouroethans, 1,1,2- | 1 | 0 130 | 0.659 | 1 d2E-08 | 0,390 | 6.33E-09 | 1.72E+04 | 3 99E+05 | 2 52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1.44E+03 | 4.55E-01 | 1 98E+01 | 1.75E-04 | 1 75E-04 | | 75150 | Carbon Disuttide | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 5.33E-09 | 1.72E+04 | 3 24E+02 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 7.56E+03 | 1.97E-05 | 8.50E-04 | 1.75E-04 | 2.07E-03 | | | Methyl Acetale | | 0.130 | 0.659 | 1.62E-06
1.62E-08 | 0.390 | 6.33E-00 | 1.72E+04 | 8 78E+05 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 6.68E+03 | 6.99E-03 | 3.01E-01 | 1.75E-04 | 6.34E-04 | | 75092 | Methylene chloride | | 0.130 | 0.659 | 1.82E-08 | 0.390 | 5.33E-09 | 1.72E+04 | 5.03E+07 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1.50E+03 | 9.88E-05 | 4.25E-03 | 1.75E-04 | 5.61E-04 | | 158806 | Irans-1,2-Dichloroethylene | 1 1 | 0.130 | 0.659 | 1.826-08 | 0.390 | 5.33E-09
6.33E-09 | 1.72E+04
1.72E+04 | 7.27E+02
7.73E+01 | 2.52E+06
2.52E+06 | 9.50E+06
9.60E+08 | 1.30E-04 | 15 | 7.03E+03 | 1,17E-03 | 5.03E-02 | 1.75E-04 | 6.35E-04 | | 1634044 | Methyl-Tertrary-Butyl Ether | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 5.33E-09 | 1.72E+04 | 5.75E+01 | 2.52E+06 | 9.50E+06 | 1,30E-04
1,30E-04 | 15
15 | 1.42E+03
1.45E+03 | 8.27E-03
5.16E-04 | 3.56E-01
2.22E-02 | 1.75E-04 | 4.32E-04 | | 75343 | 1,1-Dichlorosthane | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-08 | 1.72E+04 | 3.58E+02 | 2 52E+06 | 9.50E+08 | 1.30E-04 | 15 | 7.45E+03 | 2.88E-03 | 1.24E-01 | 1.75E-04
1.75E-04 | 6.67E-04
4.58E-04 | | 156592 | cls-1,2-Dichloroethylune | 1 | 0,130 | 0.859 | 1.B2E-06 | 0.390 | 6.33E-09 | 1.72E+04 | 1 80E+02 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 7,73E+03 | 2.04E-03 | 8.77E-02 | 1.75E-04 | 4.59E-04 | | 78933 | Butanone, 2- (MEK) | 1 | 0.130 | 0.659 | 1.626-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.83E+07 | 2.5ZE+06 | 9.50E+06 | 1.30E-04 | 15 | 1.49E+03 | 4.90E-05 | 2.11E-03 | 1.75E-04 | 9.45E-04 | | 71556 | 1.1.1-Trichloroethane | 1 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 1,72E+04 | 6.01E+06 | 2 52E+06 | 9.50E+06 | .1.30E-04 | 15 | 7.88E+03 | 8.50E-03 | 3.86E-01 | 1.75E+04 | 4.75E-04 | | 110827
714J2 | Cyclohexane
Benzene | - ! | 0.130 | 0 659 | 1,62E-08 | 0.390 | 6.33E-08 | 1.72E+04 | 3.68E+05 | 2.52€+06 | 9.50E+06 | 1.30E-04 | 16 | 1.49E+03 | 1.75E+00 | 7 54E+01 | 1.75E-04 | 4.85E-04 | | 79016 | Trichloroethylene | 1 1 | 0.130 | 0.659 | 1,62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 8.08E+01 | 2 52E+08 | 9.50E+08 | 1.30E-04 | 15 | 8.12E+03 | 2.69E-03 | 1.16E-01 | 1.75E-04 | 5 42E-04 | | 108872 | Methyl cyclohexane | | 0,130
0,130 | 0.659 | 1.52E-08 | 0.390 | 6.33E-08 | 1 72E+04 | 2.91E+02 | 2.52E+06 | 9.50E+08 | 1.30€-04 | 15 | 8.56E+03 | 4,79E-03 | 2.08E-01 | 1.75E-04 | 4.836-04 | | | Toluene | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-00 | 1.72E+04 | 4.45E+02 | 2.52E+06 | 9.50E+08 | 1.30€-04 | 15 | 1.51E+03 | 3.70E-01 | 1.58E+01 | 1.75E-04 | 5.98E-04 | | 127184 | Tetrachioroethylene | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09
6.33E-09 | 1.72E+04
1.72E+04 | 5.85E+02
1.47E+02 | 2.52E+06
2.52E+06 | 9.50E+06
9.50E+06 | 1.30E-04
1.30E-04 | 15 | 9.15E+03 | 2.92E-03 | 1,26E-01 | 1.75E-04 | 5.34E-04 | | 108907 | Chlorobenzene | 1 | 0.138 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 3.11E+02 | 2 52E+00 | 9.50E+05 | 1.30E-04 | 15 | 9.55E+03
9.80E+03 | 7.83E-03
1.54E-03 | 3.37E-01 | 1.75E-04 | 4.39E-04 | | | Ethylbenzene | 1 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 1.72E+04 | 1.64E+02 | 2 52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1.02E+04 | 3.18E-03 | 5.65E-02
1.37E-01 | 1.75E+04
1.75E+04 | 4.55E-04
4.60E-04 | | | Xylenes | 1 | 0.130 | 0.659 | 1.52E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1,50E+05 | 2.52E+06 | 9.50E+08 | 1.30€-04 | 15 | 1.54E+03 | 5.88E-08 | 2:52E-04 | 1.75E-04 | 3.75F-03 | | | Styrene | |
0.130 | 0.859 | 1.62E-06 | 0.390 | 6.33E-09 | 1.72E+04 | 5.44E+05 | 2.52E+08 | 9.50E+08 | 1.30€-04 | 15 | 1.05E+04 | 1.06E-03 | 4.67E-02 | 1.75E-04 | 4 476-04 | | | Isopropylbenzene | 1 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.086+08 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1,54E+03 | 1.26E-02 | 5.51E-01 | 1.75E-04 | 3.95E-04 | | | 1,1,2,2-Tetrachioroethane | 1 | 0.130 | 0,659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.15E+08 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 1.05E+04 | 1.34E-04 | 5.77E-03 | 1.75E-04 | 5.65E-04 | | | Dichlorobengene, 1,3-
1,4-Dichlorobengene | 1 1 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.00E+02 | 2 52E+06 | 9 50E+06 | 1.30E-04 | 15 | 1.50E+03 | 4 11E-03 | 1.77E-01 | 1,75E-04 | 2.56E-04 | | | 1,2-Dichlorobenzene | | 0.130 | 0.859
0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.50E+02 | 2 52E+05 | 9.50E+06 | 1.30E-04 | . 15 | 1.12E+04 | 8 89E-04 | 3.83E-02 | 1.75E-04 | 4.38E-04 | | | 1,2,4-Trichlorobenzene | | 0.130 | 0.658 | 1.62E-08 | 0.390 | 6.33E-09
6.33E-09 | 1.72E+04
1.72E+04 | 5.10E+01
1.13E+06 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1,21E+04 | 5.51E-07 | 2.37E-05 | 1.75E-04 | 3,94E-02 | | | Benzaldehyda | | 0.130 | 0.659 | 1,62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 1.74E+05 | 2.52E+06 | 9.50E+06
9.50E+06 | 1.30E-04 | 15
15 | 1.32E+04 | 4.35E-04 | 1.87E-02 | 1.75E-04 | 2.26E-04 | | 91576 | Methylnaphthalana, 2- | i i | 0.130 | 0.659 | 1.62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 5.41E+03 | 2.52E+06 | 9.50E+08 | 1.30E-04
1.30E-04 | 15 | 1.53E+03
1.51E+03 | 2.29E-05
0.08E-04 | 9.84E-04
3.81E-02 | 1.75E-04
1.75E-04 | 1.35E-03
3.13E-04 | | | Biphenyi, 1,1'- | 1 | 0.130 | 0.650 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 8.61E+04 | 2,52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.47E+03 | 2.68E-04 | 1.14E-02 | 1.75E-04 | 3.13E-04
3.15E-04 | | | Acenaphihylene | 1 | 5,130 | 0.659 | 1.625-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.00E+02 | 2.52E+08 | 9.50E+05 | 1.30E-04 | 15 | 1.51E+03 | Z 45E-04 | 1.05E-02 | 1.75E-04 | 3.39E-04 | | | Acensphthene | 1 | 0.130 | 0.669 | 1.62E-08 | 0.390 | 6.33E-09 | 1 72E+04 | 6.09E+04 | 2.52€+08 | 9 50€+08 | 1.30E-04 | 15 | 1.81E+04 | 3 67E-05 | 1.58E-03 | 1,75E-04 | 7.33E-04 | | | Oibenzoluren | 1 | 0.130 | 0.659 | 1.62E-06 | 0.390 | 6 335-08 | 1.77E+04 | 1.79E+03 | 2.52E+06 | 9.50E+08 | 1 30E-04 | 15 | 1.47E+03 | 3.61E-03 | 1.51E-01 | 1.75E-04 | 1.66E-04 | | | Fluorene | 1 1 | 0.130 | 0.659 | 1 62E-08 | 0,390 | 6.33E-09 | 1.72E+04 | 2.97E+04 | 2,52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1.62E+04 | 2,20E-08 | 9.48E-07 | 1.75E-04 | 8.18E-01 | | | Phenanthrene
Anthracene | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 8,33E-09 | 1.72E+04 | 3.64E+04 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.48E+03 | 1.14E-04 | 4.90E-03 | 1.75E-04 | 3.50E-04 | | | C5-C8 Aliphatics | } | 0.130 | 0.659 | 1.62E-08
1.62E-08 | 0.390 | 8,33E-09 | 1.72E+04 | 2.576,+03 | 2.52E+06 | 9,50E+08 | 1.30E-04 | 15 | 1.84E+04 | 1.20E-05 | 5.43E-04 | 1,75E-04 | 1.60E-03 | | | C9-C12 Aliphalics | 1 | 0.130 | D 659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04
1.72E+04 | 9.83E+04
6.11E+04 | 2.5ZE+08 | 9,50E+06 | 1.30E-04 | 15 | . NA | 6.48E-01 | 2.79E+01 | 1,75E-04 | 3.64E-04 | | | C9-C10 Aromatics | - | 0.130 | 0.659 | 1.626-08 | 0.390 | 6.33E-09 | 1.725+04 | 4,31E+05 | 2.52E+08
2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | . NA | 7.80€-01 | 3.36E+01 | 1.75E-04 | 3.64E-04 | | | C9-C16 Allphatics | 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 9.256+05 | 2.52E+06 | 9.50E+08 | 1.30E-04
1.30E-04 | 15 | NA
NA | 3.96E-03 | 1.70E-01 | 1.75E-04 | 3 69€-04 | | | C11-C22 Aromatics | | 0.130 | 0,659 | 1.82E-08 | 0.300 | 6,33E-09 | 1.725+04 | 9.24E+05 | | 9.60E+06 | 1.30E-04
1.30E-04 | 15 | NA NA | 0.28E-01
3.60E-04 | 3,56E+01
1,56E+02 | 1.76E-04
1.76E-04 | 3.64E-04
4.27E-04 | Appendix C.4 Johnson & Ellinger Model - Data Enliry Screen Inhaletion of Volaties from Soil Future Child Recreational Scenario - CT Southweel Preview, Wells G&H Superfund Sits, Operable Whitney Barrel | Chemical
CAS No. | | Diffusion
path
length. | Convection
path
length. | Soll-water
partition
coefficient. | Source
vapor
conc. | Crack
radius, | Average
vapor
flow rate
into bidg. | Crack
effective
diffusion
coefficient. | Area of
orack. | Exponent of
equivalent
foundation
Peciet
number. | Infinite source indoor attenuation coefficient. | Infinite
source
bldg.
conc. | Unit
risk
factor. | Reference | |---------------------|--|------------------------------|-------------------------------|---|--------------------------|--------------------|---|---|----------------------|--|---|--------------------------------------|-------------------------|--------------------| | (numbers only. | | L. | ۱, | K, | Caucos | r _{oneck} | | D | Auset | exp(Pef) | Œ | Course | URF | RfC | | no dashes) | Chemical | (cm) | (cm) | (cm³/g) | (ug/m³) | (cm) | (cm³/s) | (cm²/s) | (cm²) | (unitless) | (unitleas) | (µg/m³) | (µg/m³).5 | (mg/m³) | | In case the same of | | | | | | | | | | | | | | | | 95636
540590 | Trimelhylbenzene, 1,2,4- Dichloroethylene, 1,2- (total) | 1 | 15 | 7.43E+00 | N/A | 0.10 | 2.74E+01 | 4.77E-04 | 1.23E+03 | 2.75E+303 | 1.08E-05 | N/A | N/A | 6.0E-03 | | 108878 | Trimel hybenzene, 1,3-(100a) | | 15
15 | 2.57E-01
3.34E+00 | N/A
N/A | 0.10
0.10 | 2.74E+01
2.74E+01 | 3.77E-04 | 1.23E+03 | #NUM | 1.08E-05 | N/A | #N/A | #N/A | | 104518 | n-Bulyibenzene | | 15 | 5.02E+00 | N/A | 0.10 | 2.74E+01 | 3.95E-04
4.41E-04 | 1.23E+03
1.23E+03 | *NUMI | 1.08E-05
1.08E-05 | N/A | N/A | 6.0E-03 | | 91203 | Naphihalene | - i | 15 | 4.00E+00 | 4.27E+03 | 0.10 | 2.74E+01 | 4.70E-04 | 1.23E+03 | 9.67E+307 | 1.08E-05 | 4.61E-02 | N/A | 3.0E-03 | | 99876 | Isopropyltoluene, 4- | 1 | 15 | 3.18E+00 | N/A | 0.10 | 2.74E+01 | 4.39E-04 | 1,23E+03 | #NUM | 1.08E-06 | N/A | N/A | 4.0E-01 | | 135988 | Bulylbenzene, sec- | 1 | 15 | 8.22E+01 | N/A | 0.10 | 2.74E+01 | 4.86E-04 | 1.23E+03 | 5.47E+297 | 1.08E-05 | N/A | #N/A | #N/A | | 74873 | Chloromelhane | 1 | 15 | 2.86E-02 | 3.24E+05 | 0.10 | 2.74E+01 | 7.68E-04 | 1.23E+03 | 1.14E+189 | 1.08E-05 | 3.51E+00 | N/A | 9.0E-02 | | 75014 | Vinyl chloride | 1 | 15 | 3.72E-02 | 6.48E+05 | 0.10 | 2,74E+01 | 8 44E-04 | 1.23E+03 | 5.27E+224 | 1.08E-05 | 6,89E+00 | 8.8E-06 | 1.0E-01 | | 74839
75003 | Bromomethane | | 15 | 2.86E-02 | N/A | 0.10 | 2.74E+01 | 4.48E-04 | 1.23E+03 | *NUMI | 1.08€-06 | N/A | N/A | 5.0E-03 | | 76354 | Ethyl Chloride | | 15 | 2.86E-02 | 1.12E+06 | 0.10 | 2.74E+01 | 7.66E-04 | 1.23E+03 | 1.14E+189 | 1.08E-05 | 1,21E+00 | N/A | 1.0E+01 | | 78131 | 1,1-Dichloroethylene Trichloro-1,2,2-triflouroethane, 1,1,2- | 1 | 15
16 | 1.18E-01
4.60E-01 | 1.08E+05
N/A | 0.10 | 2.74E+01
2.74E+01 | 5,47E-04 | 1 23E+03 | 3.62E+264 | 1.086-05 | 1.17E+00 | N/A | 2.0E-01 | | 67641 | Acetone | | 16 | 1,15E-03 | 1.37E+03 | 0.10 | 2.74E+01 | 1.75E-04
2.07E-03 | 1 23E+03
1 23E+03 | #NUMI
9.18É+69 | 1.07E-05
1.09E-05 | N/A
1.48E-02 | N/A
N/A | 3.0E+01 | | 75150 | Carbon Disulfide | 1 | 16 | 1.03E-01 | N/A | 0.10 | 2.74E+01 | 6.34E-04 | 1.23E+03 | 1,25E+228 | 1.08E-06 | 1,46E-02 | N/A | 7.0E-01 | | 79209 | Methyl Acelete | 1 | 15 | 6.64E-03 | N/A | 0.10 | 2.74E+01 | 8.81E-04 | 1.23E+03 | 1.17E+168 | 1.08E-06 | N/A | #N/A | #N/A | | 75092 | Methylene chloride | . 1 | 15 | 2.34E-02 | 1.60E+05 | 0.10 | 2.74E+01 | 6.35E-04 | 1.23E+03 | 8.55E+227 | 1.08E-05 | 1,73E+00 | 4.7E-07 | 3.0E+00 | | 158805 | trans-1,2-Dichloroethylene | 1 | 15 | 1.05E-01 | 8.20E+04 | 0.10 | 2.74E+01 | 4.32E-04 | 1.23E+03 | #NUM | 1,08E-05 | 8.856-01 | N/A | 2.0€-01 | | 1634044 | Methyl-Terliary-Bulyl Ether | 1 | 16 | 7.68E-02 | 4.58E+03 | 0.10 | 2.74E+01 | 5,87E-04 | 1.23E+03 | 9.48E+216 | 1.08E+05 | 4.96E-02 | N/A | 3.0£+00 | | 75343 | 1,1-Dichloroethane | 1 | 15 | 6.32E-02 | 1.82E+05 | 0.10 | 2.74E+01 | 4.58E-04 | 1.23E+03_ | #NUMI | 1.08E-05 | 1.75E+00 | N/A | 5.0E-01 | | 156592 | cis-1,2-Dichloroethylene | . 1 | 15 | 7.10E-02 | 5.86E+04 | 0.10 | 2.74E+01 | 4,59E-04 | 1.23E+03 | #NUMI | 1.085-05 | 6.12E-01 | N/A | 2.0E-01 | | 78933 | Butanone, 2- (MEK) | 1 | 16 | 7.66E-03 | N/A | 0.10 | 2.74E+01 | 8.45E-04 | 1.23E+03 | 1.18E+153 | 1.08E-05 | N/A | N/A | N/A | | 71556
110627 | 1,1,1-Trichloroethane | | 16 | 2.20E-01 | N/A | 0.10 | 2.74E+01 | 4.75E-04 | 1.23E+03 | 4.30E+304 | 1.08E-05 | N/A | N/A | 2.2E+00 | | 71432 | Cyclohexane
Benzene | | 15 | 3.20E-01
1.18E-01 | N/A | 0.10 | 2.74E+01 | 4.85E-04 | 1.23E+03 | 3.16E+298 | 1,08E-05 | N/A | #N/A | #N/A | | 79016 | Trichloroethylene | - ; | 15 | 3.32E-01 | 2.65E+04
1.09E+05 | 0.10 | 2.74E+01
2.74E+01 | 5.42E-04
4.83E-04 | 1.23E+03
1.23E+03 | 1.61E+267
3.77E+299 | 1.08E-05 | 3.086-01 | 7.8E-06 | 3.0E-02 | | 108872 | Methyl cyclohexane | 1 | 15 | 5.36E-01 | 3.35E+08 | 0.10 | 2.74E+01 | 5.68E-04 | 1.23E+03
1.23E+03 | 3.77E+299
1.50E+242 | 1.08E-05
1.08E-05 | 1,18E+00
3,62E+01 | 1.1E-04
N/A | 4.0E-02 | | 108883 | Toluene | | 15 | 3.84E-01 | 1.28E+05 | 0.10 | 2.74E+01 | 5.34E-04 | 1.23E+03 | 1.10E+271 | 1.08E-05 | 1.39E+00 | N/A | 4.0E-01 | | 127184 | Tetrachioroethylene | 1 | 15 | 3.10E-01 | 9.19E+04 | 0.10 | 2.74E+01 | 4.39E-04 | 1.23E+03 | #NUMI | 1.08E-06 | 9.92E-01 | 5.9E-06 | N/A | | 108907 | Chiorobenzene | 1 | 15 | 4.38E-01 | 3.21E+04 | 0.10 | 2.74E+01 | 4.65E-04 | 1.23E+03 | #NUMI | 1.08E+05 | 3.48E-01 | N/A | 6.0E-02 | | 100414 | Elhylbenzene | 1 | 15 | 7.26E-01 | 2.88E+04 | 0.10 | 2.74E+01 | 4.60E-04 | 1.23E+03 | #NUMI |
1.08E-05 | 2.90E-01 | N/A | 1.0E+00 | | 1330207 | Xylenes | 1 | 16 | 4.82E-01 | N/A | 0.10 | 2.74E+01 | 3.75E-03 | 1.23E+03 | 4.03E+38 | 1,09E+05 | N/A | N/A | 1.0E-01 | | 100425 | Slyrene | 1 | 15 | 1.55E+00 | N/A | 0.10 | 2.74E+01 | 4.47E-04 | 1.23E+03 | #NUM! | 7.08E-05 | N/A | IIN/A | #N/A | | 98828
79346 | laopropylbenzene_ | 1 | 15 | 1.86E+01 | N/A | 0.10 | 2.74E+01 | 3.95E-04 | 1.23E+03 | MUM# | 1.08E-05 | N/A | N/A | 4.0E-01 | | 641731 | 1,1,2,2-Tetrachtoroethane Dichlorobenzene, 1,3- | | 15 | 1.87E-01 | N/A | 0.10 | 2.74E+01 | 5.65E-04 | 1.23E+03 | 1.98E+258 | 1.08E-05 | N/A | #N/A | #N/A | | 108487 | 1,4-Dichlorobenzene | | 15 | 3.40E-01
1.23E+00 | 3.19E+04
6.66E+03 | 0.10 | 2.74E+01
2.74E+01 | 2,68E-04 | 1.23E+03 | #NUMI | 1.07E-05 | 3.42E-01 | N/A | N/A | | 95501 | 1,2-Dichtorobenzene | | 15 | 1.07E-01 | 3.94E+00 | 0.10 | 2.74E+01
2.74E+01 | 4,38E-04
3,94E-02 | 1.23E+03 | #NUMI
4.74E+03 | 1,08E-05
1,09E-05 | 7.19E-02
4.28E-05 | N/A | B.OE-01 | | 120821 | 1,2,4-Trichlorobenzene | 1 | 15 | 3.56E+00 | N/A | 0.10 | 2.74E+01 | 2.25F-04 | 1.23E+03
1.23E+03 | 4NUM) | 1.07E-05 | 4.28E-08 | N/A | N/A
2.0E-01 | | 100527 | Benzaldehyde | 1 | 15 | 6.54E-02 | N/A | 0.10 | 2.74E+01 | 1.35E-03 | 1.23E+03 | 2.60E+107 | 1.086-05 | N/A | #N/A | #N/A | | 91578 | Methylnaphthaiene, 2- | 1 | 15 | 1.70E+01 | 1.20E+04 | 0.10 | 2.74E+01 | 3,13E-04 | 1,23E+03 | #NUMI | 1.08E-05 | 1,29E-01 | N/A | 3.0E-03 | | 92524 | Biphenyl, 1,1'- | 1 | 15 | 1.25E+01 | N/A | 0.10 | 2,74E+01 | 3.15E-04 | 1.23E+03 | #NUMI | 1.08E-05 | N/A | N/A | N/A | | 208968 | Acenaphthylene | 1 | 15 | 9.57E+00 | 4.31E+02 | 0,10 | 2.74E+01 | 3.38E-04 | 1.23E+03 | #NUMI | 1.08E-06 | 4.64E-03 | N/A | 3.0E-03 | | 63329 | Acenephthene | 1 | 15 | 1.42E+01 | N/A | 0.10 | 2.74E+01 | 7.33E-04 | 1.23E+03 | 2.13E+197 | 1.08E-05 | N/A | N/A | 3.0E-03 | | 132649 | Dibenzofuran | 1 | 15 | 1.63E+01 | 1.64E+04 | 0.10 | 2.74E+01 | 1.56E-04 | 1 23E+03 | #NUMI | 1.07E-05 | 1.75E-01 | N/A | N/A | | 66737 | Fluorene | | 15 | 1.54E+01 | N/A | 0.10 | 2,74E+01 | 6,18E-01 | 1.23E+03 | 1.50E+00 | 3.24E-05 | N/A | N/A | 3.0E-63 | | 85018 | Phenanthrene | | 15 | 2.83E+01 | 6.27E+03 | 0.10 | 2.74E+01 | 3,50E-04 | 1.23E+03 | #NUM) | 1,08E-05 | 6.76E-02 | N/A | 3.0E-03 | | 120127
C5-C8 | Anthracene
C5-C5 Aliphatics | - 1 - | 15 | 5.90E+01 | N/A | 0.10 | 2.74E+01 | 1.80€-03 | 1.23E+03 | 5.14E+90 | 1.08E-05 | N/A | N/A | 3.0E-03 | | C9-C12 | C9-C12 Aliphatics | | 15 | 4.53E+00
3.00E+02 | 3.54E+08
6.76E+08 | 0.10 | 2.74E+01 | 3.64E-04 | 1.23E+03 | #NUMI | 1.085-05 | 4.14E+03 | N/A | 2 OE-01 | | C9-C10 | C9-C10 Aromatics | - | 15 | 3.56E+00 | 1.96E+07 | 0.10 | 2,74E+01
2,74E+01 | 3.64E-04 | 1.23E+03 | #NUMI | 1.08E-05 | 7.29E+01
2.10E+02 | N/A | 2.0E-01 | | C9-C18 | C9-C18 Aliohatics | | 15 | 1.38E+03 | 2.42E+07 | 0.10 | 2.74E+01 | 3.69E-04
3.64E-04 | 1.23E+03
1.23E+03 | #NUMI | 1.08E-05
1.08E-05 | | N/A
N/A | 5.0E-02
2.0E-01 | | C11-C22 | C11-C22 Aromatics | | 15 | 1.00E+01 | 1.40E+08 | 0.10 | 2.74E+01 | 4.27E-04 | 1.23E+03
1.23E+03 | #NUMI | 1,08E-06 | 2.61E+02
1.51E+01 | N/A | 5.0E-02 | | | 10.1.1 | | · | 1.00(270) | L 1.40E*00 | 0.10 | 1 2.7-6-01 1 | 7.2/5-74 | 1 (25-403 | Pia∆Wi | 1,002-00 | 1.01E+01 | | _ 0.0E-02 | #### RESULTS SHEET Appendix C.4 Johnson & Ettinger Model - Diese Entry Screen Inheletion of Volatiles From Soil Future Child Recreational Scanierio - CT Ecustrevast Proesies, Walls G&H Superkund Site. Coverable Unit 2 Whitever Dennis #### RISK-BASED SOIL CONCENTRATION CALCULATIONS: # INCREMENTAL RISK CALCULATIONS: | Indicor | | | | | | | | Incremental | Hezard | |--|-------------|---------------------|-----------|-----------|------------|--------------|---------------|--------------|---------------| | Cubrical Cub No. Commission Cub Commission Cub Commission Cub Commission Cub | | | Indoor | Indoor | Risk-based | | Final | risk from | quotent | | Cubrical Cub No. | | | 400004178 | 6000000FG | Indoor | Soil | indoor | Yapor | from Yepor | | December Chemical Endos of | Chamical | | | act. | CODORATE | seturation | entropolities | intrusion to | Intrusion to | | Committee only Committee | | | | sond. | acil | | soil | Indoor air. | Indoor eir, | | ### PROFESSE Chemical (ug/kg) (ug/kg | | | | | | | | | noncercinogen | | ### ### ### ### ### ### ### ### ### ## | | Chambridge | | | | | | | | | Description of the control | no degrees] | - Cindings | (pg rg) | /PV 19/ | V-V-V/ | Y 4.37 | | | , | | Description of the control | | T | | 1 | | I A TATAOR I | | N/A | NA. | | Total | | | | | | | | | | | 10-518 | | | | | | | | | | | 1972 Nachrhamma NA | | | | | | | | | | | MA | | | | | | | | | | | 13.6965 Decimarisment SA | | | | | | | | | | | 14673 Chicorosthane | | | | | | | | NA. | | | 1997 Very other/sis | | | | | | | | NA. | 2.9E-04 | | Page | | | | | | | | 1.36-08 | | | 1990 The Churche Chu | | | | | | | | | | | 1-1-Chebrored-views | | | | | | | | NA. | 9.0E-07 | | 1983 Timbrone 1.2.2-Pillourosthone, 1.1.2- NA NA NA J. 9.09E-05 NA | | | | | | | | NA. | | | 17841 Acatone NA | | | | | | | | | | | 179100 Control Gouldide | | | | | | | | | | | 1920 | | | | | | | | NA. | NA. | | 15982 Methylene chloride NA | | | | | | | | NA. | NA NA | | 198805 term-1,2-Dehicroenhane NA NA NA 1,250-05 NA 1,250-05 NA NA NA 1,250-05 NA NA NA 1,250-05 NA NA NA 1,250-05 NA NA NA NA 1,250-05 NA NA NA NA NA 1,250-05 NA NA NA NA NA NA NA N | | | | | | | | 1.7E-10 | 4.JE-06 | | 1543044 | | | NA. | NA. | NA | | NA. | NA. | 3.1E-06 | | TSIA3 | | | | | | | | NA NA | 1.2E-07 | | 196902 Delianteroul/steroul NA | | | | | NA. | | | NA | 2.6E-05 | | T8833 Bulances 2- (MEK) NA NA | | | NA. | NA. | NA. | | N/A | NA. | 2.3E-05 | | 11927 Cockineman | | | NA. | NA. | NA. | | | ····NA | NA NA | | 14-12 | 71556 | | NA | NA. | NA. | 8,01E+05 | NA. | NA. | | | T1432 | 110827 | Cycloherane | NA. | NA. | NA | 3.88E+05 | NA. | NA NA | | | 1939/72 Methyl continuaries NA | 71432 | Senzene | NA. | NA. | NA . | 5,745+05 | 74 | | | | 198842 Toleron Toler | 79016 | Trichloroethylene | NA. | NA . | NA. | 6,05E+05 | | | | | 127.794 Teachsrooffsfelow NA | 105872 | Methyl cyclohexame | NA. | NA | HA | 2.98E+04 | | | | | MA | 108883 | Toisene | | | | | | | | | 130207 Zeferson NA NA 1,05E-05 NA NA 1,05E-05 NA NA NA NA NA NA NA N | 127184 | Tetrachiorosthylene | NA. | NA . | | 1,08E+05 | | | | | 1300007 | 108907 | Chicrobenzane | | | | | | | | | 100425 Sherene | | Ethylbonzone | | | | | | | | | 00.023 | | | | | | | | | | | 19345 11.2.2-Terkenblorochase | | Styrene | | | | | | | | | Selection Sele | | | | | | | | | | | 156467 1-Dichlorobenbare | | | | | | | | | | | 120021 13-Discharcebergame NA | | | | | | | | | | | 1209.21 12_A-Tichhorden-bree HA | | | | | | | | | | | 100527 Bezzieletyck NA NA 1.48-509 NA NA NA 1.48-509 NA NA NA 1.48-509 NA NA NA 1.48-509 NA 1.48-509 | | | | | | | | | | | 91579 Meth-teachtederer, 2- MA NA 1AA 4,245-05 NA 1A 3.2.5-04 125.34 Meth-teachtederer, 2- MA NA NA 1AB 4,245-05 NA NA 1AB 2.2.5-04 2.2 | | | | | | | | | | | 22334 Bibrary, 1,1" NA NA 5,0" 5,0" NA NA 1,0"
1,0" | | | | | | | | | | | 200668 | | | | | | | | | | | 19328 Acompiritive NA | | | | | | | | | | | 132849 Diseazo(ur) MA MA NA 1,3555/05 MA NA NA NA 1,355/05 MA NA | | | | | | | | | | | NA NA NA REPORT | | | | | | | | | | | B3011 Pharenthems NA NA 3.816104 NA 1.72-04 | | | | | | | | | | | 120127 | | | | | | | | | | | CS-C3 CS-C3 Allohatics NA NA NA 7,855-07 NA NA 1,555-07 CS-C3 CS-C2 Rightenburg NA NA NA 7,855-07 NA NA 1,555-07 NA NA 2,755-03 CS-C10 Arcmetics NA NA NA 1,2325-09 NA NA 3,1-6-02 CS-C3 CS-C10 Arcmetics NA NA NA 1,365-09 NA NA 2,755-03 NA NA 2,755-03 NA NA 1,555-07 NA NA NA 1,555-09 NA NA 1,555-09 NA NA 1,555-09 NA NA 1,555-09 NA NA NA NA 1,555-09 NA 1,555-09 NA NA NA NA 1,555-09 NA NA NA NA 1,555-09 NA NA NA NA 1,555-09 NA | | | | | | | | | | | CD-C12 CR-C12 Alphanistra NA NA NA 2.17E-07 NA NA 2.17E-03 CR-C10 CR-C10 Alphanistra NA NA NA NA NA 2.17E-03 NA 3.1E-02 CR-C14 CR-C16 Alphanistra NA NA NA NA 1.3EE-07 NA NA 3.7E-03 NA 3.7E-02 NA 3.7E-03 NA NA NA NA 8.7E-03 RESEARCH NA NA NA RESEARCH NA NA NA RESEARCH NA NA NA RESEARCH NA NA RESEARCH NA RESEARCH NA NA RESEARCH NA RESEARCH NA NA RESEARCH | | | | | | | | | | | C9-C10 C9-C10 Aremetics NA NA NA 1,92E+00 NA NA 1,1E-02 C9-C18 C9-C18 Alphadicz NA NA NA 1,36E+07 NA NA 8,7E-03 | | | | | | | | | | | C9-C18 C9-C18 Apphasics NA NA NA 1.86E-07 NA NA 8.7E-03 | Contract Contracts No. 1 No. 1 No. 1 No. 1 No. 1 Access No. 1 Access | | | | | | | | | | | | C:1-C2Z | CITICAL Atemptos | T Lév | 1 190 | <u> </u> | 1.346.37 | | <u> </u> | , 4-4 L-7-4 | 96% UCL Cencer 95% UCL Risk HI TOTAL: 4E-08 2.0E-01 = Cancer risk > 1E-05 or HO/H>1E+00 Trimetrisbenzame, 1,2,4Chichicrostrykane, 1,2,1 (ptal) Trimetrisbenzame, 1,3,5n-Buylishane, 1,3,6n-Buylishane, 1,3,6n-Buylishane, 1,3,6n-Buylishane, 1,3,6n-Buylishane, 1,3,6n-Buylishane, 1,3,6n-Buylishane, 1,3,6n-Buylishane, 1,3,6n-Buylishane, 1,3,6Nection of the second Liberios C. 6. Johnson & Etimorr Model - Dela Errity Screen Inhylation of Violatina Inon 304 Futura Adus Recreational Scanario - RME Southwest Promition. Walls GAH Supersund Stree. Occessive Unit 2 Whitney Serra! CALCULATE RISK BASED GOLL CONCENTRATION (union "X" in "YES" (xxx) SL-SCREEN Version 2.3; 03/01 VES OR CALCULATE INCREMENTAL RISKS FISCU ACTUAL SCIE, CONCENTRATION (under "Z" in "TES" true and initial end core, below | | Enset Mittel and cor | nearithton, | ENTER | entex | ENTER | ENTER | ENTER | | | | | | | | | | | | | |---------------------|--|------------------------|--|---|-----------------------------------|--|---------------------------------------|--|---|---|--|-----------------------|-----------------------|-----------------|------------------|------------|--------------|--------------------|---| | ENTER | | ENTER | Cecth
below onede | | | Vedose zone | User-delimed | ENTER | ENTER | ЕМТЕ Я | ENTER | ENTER | RATINS | ENTER | ENTER | ентея | EMTER | ENTER | ENTER | | Chenhosi
CAS No. | | Magers
and
conc. | to bottom
of enclosed
space floor, | Creath below
grade to los
of contemination. | - Average
soil
temperature. | #CS
#01 how
Asset to establish CSR | VACORA 2014
FOI VECT
COTTANDES. | Vadose zona
soil dry
bulk density. | Vacione zone
spilitolei
concelly. | Vactore 2014
soil veter-filed
porcetty. | Various zone
edi organic
certron frection. | Averesing
time for | Averageno
time for | Excasure | Scotte | Secours | Coversion | Tarout
risk for | Tempel (sp.zerd)
quartient for | | (numbers only, | | CR. | L | Li Li | 7, | ect veco. | * | en e | no oran | e_v | OWEGE PRODUCT | Carcinocere. | ATNC | duration.
ED | frequency.
EF | ET | lector
CF | OSTOPHOGENS. | THQ | | no deshee) | Chertical | (4010) | (15 or 200 cm) | (um) | (°C) | permeability) Note | [em ⁻) | (g/cm²) | (undiage) | (cm²km²) | (Loitiese) | (ATR) | ATI) | (100) | (develop) | (000,000) | fre'm | (Ninkless) | (unidees) | | 464 | Trimethylbenzene, 1.2.4- | | 18 | 15 | 10 | LS | | 1.5 | 0.63 | 03 | 0.002 | 76 | 24 | - 24 | 78 | 7.5 | 9780 | 1 05-08 | , , | | \$4000 | Dichloroethylene, 1,2- (total) | | 16 | 16 | 10 | L8 1 | | 1.5 | 043 | 0.3 | 0.002 | 70 | 24 | 24 | 78 | 2,5 | 3760 | 1.0E-08 | 1 | | 100676 | Trimethylbenzene, 1,3,5- | 1 | 18 | 15 | 10 | L6 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 78 | 2.5 | 6780 | 1 0E 408 | 1 | | 104514 | n-Butylbenzene | | (6 | 16 | 10 | LIS 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 76 | 24 | 24 | 78 | 2.5 | 8780 | 1 DE Q8 | 1111 | | 81205 | Naphthalane | 2.74E+03 | 16 | 15 | 10 | LB 1 | | 1.6 | 0.43 | 0.3 | 0.002 | 75 | 24 | 24 | 78 | 7.5 | 8780 | 1 0E 08 | 1 1 | | 99476 | leopropytoluene, 4- | | 18 | 16 | 10 | LS 1 | | 1.5 | 0.43 | 0.3 | 0.003 | 76 | 24 | 24 | 78 | 2.5 | 8780 | 1 0€-08 | 7 | | 136645 | Butythenzene, sec- | | 16 | 15 | 10 | LB 1 | | 1,5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 2 | 78 | 2.5 | 6780 | 1 0€ 08 | , | | 74472 | Chlorumethane | 2.496+02 | 16 | 15 | 10 | L8 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 78 | 2.6 | 9780 | 106-08 | 1 _1 | | 76014 | Vinyl chiaride | 2.61E+02 | 18 | 18 | 10 | LS i | | 1.5 | 0.43 | 0.3 | 0.002 | 75 | 24 | Ä | УB | 2.5 | 8780 | 1 06-08 | 1 | | 76436 | Bromomethane | | 16 | 15 | 10 | L5 1 | ļ | 1.5 | 0.43 | 0.3 | 0 002 | 70 | 24 | 24 | 78 | 2.6 | 9780 | 1 06-08 |] 1 | | Plots | Ethyl Chloride | 8.80E+01
1.20E+02 | (5 | 16 | 10 | LB 1 | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 78 | 2.5 | 8750 | 1 0E 08 | 1 | | 76364
76121 | (,1-Dichloroethylene | 1205402 | 16 | 15 | 10 | L8 1 | | 1.5 | 0.43 | 0.3 | 0 002 | 70 | 24 | 24 | ٠٠٠٠ ار
٠٠٠ | 2.6 | 8780
8780 | 1 06 00 | 1 | | 6941 | Trichioto 1 2 2 at linut on the ne 1 1 2 a | 124E+02 | 15 | 16 | 10 | L8 1 | | 1,5 | 0.43 | 0.3 | 0.002 | 70 | 34
34 | 24 | 78
78 | 2.5
2.5 | 8750 | 1 0E-08
1 0E-08 | 1 | | 76160 | Carbon Diguifide | 12.0.0 | 18 | 16 | 10 | 18 1 | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 78 | 2.5 | 8750 | 106-04 | 1 1 | | 78500 | Methyl Acetele | | 15 | 18 | 10 | L6 1 | | 1.5 | 0.43 | 03 | 0.002 | 70 | 24 | - 24 | 78 | 2.5 | 8780 | 1 06-08 | + | | 79002 | Methylene chloride | 7.27E+02 | 18 | 15 | 10 | 18 1 | | 1.5 | 0.43 | 03 | B.002 | 70 | 24 | 24 | 78 | 2,6 | 8760 | 1 05 08 | + | | 130606 | trans-1_2-Dichlorosthylene | 7.73E+01 | 18 | 15 | 10 | LS T | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 78 | 2.5 | 8780 | 1 0E-08 | 1 1 | | 1634044 | Methyl-Tertiery-Butyl Ether | 6,75E+01 | 18 | 15 | ιņ | L8 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 76 | 2.5 | 8750 | 1 06-06 | 1-1-1 | | 79343 | 1,1-Dichloroethane | 1.56E+02 | 15 | 16 | fo | LB T | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 78 | 2.5 | 8750 | 1 0E-08 | 1 | | 150000 | cle-1,2-Dichloroethylene | 1.80E+02 | 18 | 15 | 10 | LS 1 | | 1.5 | 0.43 | 0.3 | 0 002 | 70 | 74 | 24 | 71 | 2.5 | 8760 | 1.0E-08 | 1 | | 70013 | Butanone, 2- (MEK) | | 18 | 18 | to | LS 1 | _ | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 78 | 2.6 | 8780 | 1 06-08 | 7 | | 71900 | 1,1,1-Trichicrosthune | | 18 | 15 | 10 | L5 e | <u> </u> | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 78 | 2.5 | a760 | 1 06 08 | 1 | | 110437 | Cyclohekahe | | 15 | 16 | 10 | LS 1 | | T.5 | 043 | 0.3 | 0.002 | 70 | 24 | и. | 78 | 7.6 | A780 | 1.06.08 | 1 | | 71450 | Воплени | 2.10E+02 | 15 | 16 | 10 | LB 1 | | 7.6 | 0.43 | 03 | 0.002 | 70 | 24 | 24 | 76 | 2.5 | 8760 | 1.0E-06 | 1 | | 79039 | Trichlorostrylens | 2 81E+62 | 18 | 18 | 10 | L8 1 | | 1.5 | 9.43 | 0.3 | 0.002 | 70 | 24 | 24 | TE | 2.5 | 8760 | 1 06,408 | 1 | | 106877 | Methyl cyclchecene | 4,45E+02 | 15 | 15 | 10 | 13 1 | | 1.5 | 0.43 | ده | 200.0 | 76 | 24 | 24 | 18 | 25 | 8750 | 1 0E-08 | 1 1 | | 100041 | Toluene | 5.856+02 | 15 | 16 | 10 | L8 1 | 7 | T.5 | 0.43 | 03 | 0.002 | 70 | 24 | 24 | 76 | 2.5 | 8760 | 1.0E-06 | 1 "1 " | | 12*144 | Tetrachicrostrylens | 1.47E+02 | 16 | 15 | 10 | 1 (5 11) | | 1.5 | 9.43 | 0.3 | 0.002 | 70 | 24 | 24 | 76 | 2.5 | 8760 | 1.06-08 | 1 | | 104807 | Chlorobenzene | 3.11E+02 | 15 | 16 | 10 | LB 1 | ļ | T.6 | 0.43 | 0.3 | 0 0003 | 70 | 24 | 34 | 78 | 2.6 | 8780 | 1.05.08 | 1 | | 100414 | Etryberasie | 1.84E+02 | 16 | 16 | 10 | l8 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 22 | 76 | 2.5 | 8760 | 1.0E-06 | 1 | | 123030V
100428 | Xylenas | | 15 | 15 | 10 | LS 1 | | 1.5 | 0.43 | 0.3 | 0.002 | מל
מל | 24 | 24 | 76
76 | 2.5 | 8760 | 1.05.06
1.05.06 | 1 | | 100CB | Styrene
Isopropybertzene | | 15 | 15 | 10 | LS 1 | | 1,5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 76 | 2.5 | 8760 | 1.0E-06 | +- | | 76A | 1,1,2,2-Tetrachioroathuna | - | 16 | 15 | 10 | LS 1 | | 1.5 | 0.43 | 0.8 | 0.002 | 70 | 24 | | 78 | 2.5 | 8760 | 1.0E-06 | 1 1 | | /698
M1791 | Dichlorobengene, 1,3- | 1.00E+02 | 16 | 16 | to | LB 1 | - | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 74 | 24 | 78 | 2.5 | 8760
8760 | 1.0E-06 | | | 106467 | 1,4-Dicherobenzene | 2.50£+02 | 15 | 16 | 10 | 18 1 | | 1.5 | 0.43 | 0.3 | 0,002 | 70 | 24 | 24 | 76 | 2.5 | 8760 | 1.0E-06 | · | | M661 |
1.2-Dichlorobenzene | 8 10E+Q1 | 18 | 18 | 10 | LS 1 | - | 1,5 | 0.43 | 0.3 | 0.002 | 76 | 24 | 26 | 76 | 2.5 | 8760 | 1.05-06 | <u> </u> | | 120121 | 1.2.4-Trichlorobenzene | | 15 | 15 | 10 | LB 1 | | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 78 | 2.5 | 8780 | 1.08-06 | 1 | | 100027 | Benzeldehyde | | 15 | 16 | 10 | 1,8 1 | | 1,5 | 0.43 | 0.2 | 0.002 | 76 | 24 | 24 | 76 | 2.5 | 8760 | 1.0E-06 | + | | 27274 | Metrytraphthalene, 2- | 541E+03 | 18 | 15 | 10 | L5 1 | | 1.5 | 0,43 | 0.3 | 0.002 | 70 | 24 | 24 | 76 | 2.5 | 8760 | 1.0E-06 | 1 | | 10834 | Bipherryl, 1,1'- | | 15 | 15 | 10 | LB 1 | | 1,5 | 0.43 | . 03 | 0.002 | 70 | 24 | 22 | 76 | 2.5 | 8700 | 1,0E-08 | 1 7 7 | | 20070 | Acuniphilitylene | 4 00E+02 | 16 | 15 | 10 | L8 1 | | 1.3 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 76 | 2.5 | 8760 | 1.0E-08 | 1 | | 23336 | Acenephthene | | - 15 | 18 | tú | ، فا | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 78. | 2.5 | 8760 | 1.0E-08 | 1 | | 122400 | Dibenzofut en | 1.79E+03 | 15 | 15 | 10 | L8 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 76 | 2.5 | 8760 | 1.0E-06 | 1 | | 91737 | Fluorena | | 18 | 16 | 10. | LS 1 | | 1.5 | 0.43 | 0.3 | 0.002 | סל | 34 | 24 | 78 | 2.5 | 8760 | 106-06 | 1 | | Mote | Phenanthrene | 3.86E+04 | 15 | 15 | 10 | LS 1 | | 1.5 | 0.43 | 0.3 | 0.002 | ŤQ | 24 | 24 | 78 | 2.5 | 8760 | 1.05-08 | | | 190127 | Anthracene | | 15 | 15 | 10 | LB 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 76 | 2.5 | 8760 | 1.0E-08 | 1 . | | C5-C4 | C5-C8 Alightetics | 9.83E+04 | 15 | 15 | 10 | LB 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 34 | 24 | 76 | 2.5 | 8766 | 1.0E-08 | 1 | | Cartis | C9-C12 Allphatics | 0.11E+04 | 15 | 15 | 10 | LS 1 | L | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 74 | 76 | 7.5 | 87(80) | 1.0E-08 | 1 | | 09-016 | C9-C10 Aromatics | 4.31E+05 | 15 | 15 | 10 | įs i | | 1,5 | 0.43 | 0.3 | 0.072 | 70 | 24 | 24 | 76 | 2.5 | 8760 | 1.0E-06 | | | CHCH | CP-C18 Allphates | 8 04E+08
4,10E+08 | 18 | 15 | 10 | LS 1 | | 1.5 | 0.43 | 0.3 | 0.002 | 70 | 24 | 24 | 78 | 2.5 | 8760 | 1.0E-06 | + ! - | | C114222
Note: | C11-C22 Argmatice | 4.106/05 | 10 | 15 | 10 | LB 1 | 1 | 1.6 | 0.43 | 0.3 | 0.002 | 70 | 74 | 24 | 78 | 2.5 | 8760 | 1.05-36 | | Appendix C.4 Johnson & Etlinger Model - Data Entry Screen Inhalation of Volatiles from Soil Future Adult Recreational Scenario - RME Southwest Prperties, Welts G&H Superfund Site, Operable Unit 2 Whitney Barret | Chemical
CAS No.
(numbers only,
no dashes) | Chemical | Diffusivity
in air,
D _a
(cm²/s) | Diffusivity
In water,
D _w
(cm ² /s) | Henry's
law constant
at reference
temperature,
H
(atm-m³/mol) | Henry's
law constant
reference
temperature,
T _R
(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{V,b}$ (cal/mol) | Normal
boiling
point,
T _s
(°K) | Critical
temperature,
T _c
(°K) | Organic
carbon
partition
coefficient,
K_{∞}
(cm ³ /g) | Pure component water solubility, S (mg/L) | Unit
risk
factor,
URF
(µg/m³) ¹ | Reference
conc.,
RfC
(mg/m³) | Physical
state at
soil
temperature,
(S.L.G) | |---|--|---|--|--|--|--|---|--|--|---|--|---------------------------------------|---| | | | • | | *** | | | | | ••• | | | • • • | | | 95636 | Trimethylberizene, 1,2,4- | 7,80E-02 | 9.03E-06 | 5.70E-03 | 25 | 1,25E+03 | 442.30 | 649.11 | 3.72E+03 | 5.70E+01 | N/A | 6.0E-03 | | | 540590 | | 5.59E-02 | 6.47E-06 | 4.30E-04 | 20 | 1,32E+03 | 585.00 | 877.50 | 1.28E+02 | 1.30E+00 | #N/A | #N/A | 0.0E+00 | | 108678 | | 6.48E-02 | 7.86E-06 | 7.81E-03 | 25 | 1.25E+03 | 442.30 | 649.11 | 1.67E+03 | 2.00E+01 | N/A | 6.0E-03 | L. | | 104518 | | 7.25E-02 | 8.39E-06 | 1.25E-02 | 25 | 1.23E+03 | 456.00 | 684.00 | 2.51E+03 | 1.26E+00 | #N/A | #N/A | L. | | 91203 | Naphthalene Naphthalene | 5.90E-02 | 7.50E-06 | 4.83E-04 | 25 | 1.04E+04 | 491.14 | 748.40 | 2.00E+03 | 3.10E+01 | N/A | 3.0E-03 | s | | 99876 | Isopropyttoluene, 4- | 7.25E-02 | 8,39E-06 | 8.60E+00 | 25 | 1.24E+03 | 450.10 | 652.04 | 1,58E+03 | 2.34E+01 | N/A | 4.0E-01 | L L | | 135988 | Butylbenzene, sec- | 8.00E-02 | 8.00E-06 | 1.67E-02 | 25 | 1.24E+03 | 446.65 | 669.98 | 3.11E+04 | 1.76E+01 | #N/A | #N/A | 0.0E+00 | | 74873 | Chloromethane | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1.35E+03 | 249.00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 9.0E-02 | 0.0E+00 | | 75014 | Vinyl chloride | 1.06E-01 | 1,23E-05 | 2.71E-02 | 25 | 5.25E+03 | 259.25 | 432.00 | 1.86E+01 | 2.76E+03 | 8.8E-06 | 1.0E-01 | <u> </u> | | 74839 | Bromomethane | 7.28E-02 | 1.21E-05 | 6.22E-03 | 25 | 5.49E+03 | 276.50 | 414.75 | 1.43E+01 | 1.52E+04 | N/A | 5.0E-03 | 0.0E+00 | | 75003 | Ethyl Chloride | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1.36E+03 | 249.00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 1.0E+01 | | | 75354 | | 9,00E-02 | 1,04E-05 | 2,61E-02 | 25 | 6.25E+03 | 304.75 | 576.05 | 5.89E+01 | 2.25E+03 | N/A | 2.0E-01 | <u> </u> | | 76131 | Trichloro-1,2,2-triflouroethane,
1,1,2- | 2.88E-02 | 8.07E-06 | 5.17E-01 | 25 | 1.33E+03 | 320.70 | 481.05 | 2.25E+02 | 1.70E+02 | N/A | 3.0E+01 | 0.0E+00 | | 67641 | Acetone | 1.24E-01 | 1.14E-05 | 3.88E-05 | 25 | 6.96E+03 | 329.20 | 508.10 | 5.75E-01 | 1.00E+06 | N/A | N/A | L, | | 75150 | Carbon Disulfide | 1.04E-01 | 1.29E-05 | 1.27E-02 | 25 | 6.39E+03 | 319.00 | 552.00 | 5.14E+01 | 2.67E+03 | N/A | 7.0E-01 | L L | | 79209 | Methyl Acetate | 1.04E-01 | 1.00E-05 | 1.13E-04 | 25 | 1.31E+03 | 365.00 | 547.50 | 3.32E+00 | 2.43E+05 | #N/A | #N/A | 0.0E+00 | | 75092 | Methylene chloride | 1.01E-01 | 1.17E-05 | 2.19E-03 | 25 | 6.71E+03 | 313.00 | 510.00 | 1.17E+01 | 1.30E+04 | 4.7E-07 | 3.0E+00 | L | | 156605 | trans-1,2-Dichloroethylene | 7,07E-02 | 1.19E-05 | 9.39E-03 | 25 | 1.33E+03 | 320.85 | 516.50 | 5.25E+01 | 6.30E+03 | N/A | 2.0E-01 | ł L | | 1634044 | | 1.02E-01 | 1.05E-05 | 5.87E-04 | 25 | 1,32E+03 | 328.36 | 497.11 | 3.B4E+01 | 5.10E+04 | N/A | 3,0E+00 | L | | 75343 | 1,1-Dichloroethane | 7.42E-02 | 1.05E-05 | 5.61E-03 | 25 | 6.90E+03 | 330.55 | 523.00 | 3.16E+01 | 5.06E+03 | N/A | 5.0€-01 | L, | | 156592 | cis-1,2-Dichloroethylene | 7.36E-02 | 1.13E-05 | 4.07E-03 | 25 | 7.19E+03 | 333.65 | 544.00 | 3.55E+01 | 3.50E+03 | N/A | 2.0E-01 | L | | 78933 | Butanone, 2- (MEK) | 8.08E-02 | 9.80E-06 | 5.60E-05 | 25 | 1.31E+03 | 352.50 | 528.75 | 3.83E+00 | 2.23E+05 | N/A | N/A | 0.0E+00 | | 71556 | 1,1,1-Trichloroethane | 7.80E-02 | 8.80E-06 | 1.72E-02 | 25 | 7.14E+03 | 347.24 | 545.00 | 1.10E+02 | 1.33E+03 | N/A | 2.2E+00 | L | | 110827 | Cyclohexane | 8.00E-02 | 9.00E-06 | 2.00E+00 | 25 | 1.31E+03 | 353.85 | 530.78 | 1,60E+02 | 5.50E+01 | #N/A | #N/A | 0.0E+00 | | 71432 | Benzene | B.80E-02 | 9.80E-06 | 5.56E-03 | 25 | 7.34E+03 | 353.24 | 562.16 | 5.89E+01 | 1.75E+03 | 7.8E-06 | 3.0E-02 | L | | 79016 | Trichloroethytene | 7.90E-02 | 9.10E-06 | 1,03E-02 | 25 | 7.51E+03 | 360.36 | 544.20 | 1.66E+02 | 1.10E+03 | 1,1E-04 | 4.0E-02 | L | | 108872 | Methyl cyclonexane | 9.86E-02 | 8.52E-06 | 4.23E-01 | 25 | 1,30E+03 | 373,90 | 560,85 | 2.68E+02 | 1.40E+01 | N/A | 3.0E+00 | L | | 108863 | 3 Toluene | 8.70E-02 | 8.60E-06 | 6.63E-03 | 25 | 7.93E+03 | 383.78 | 591.79 | 1.82E+02 | 5.26E+02 | N/A | 4.0E-01 | | | 127184 | | 7.20E-02 | 8.20E-06 | 1.84E-02 | 25 | 8.29E+03 | 394.40 | 620.20 | 1.55E+02 | 2.00E+02 | 5.9E-06 | N/A | <u> </u> | | 108907 | | 7.30E-02 | 8.70E-06 | 3.71E-03 | 25 | 8.41E+03 | 404.87 | 632.40 | 2.19E+02 | 4.72E+02 | N/A | 6.0E-02 | <u> </u> | | 100414 | | 7.50E-02 | 7.80E-06 | 7.88E-03 | 25 | 8.50E+03 | 409.34 | 617.20 | 3.63E+02 | 1,69E+02 | N/A | 1.0E+00 | <u> </u> | | 1330207 | | 7.69E-02 | 8.44E-06 | 6.73E-08 | 25 | 1,26E+03 | 417.40 | 616.21 | 2.41E+02 | 2.20E+02 | N/A | 1.0E-01 | ļ | | 100425 | | 7.10E-02 | 8,00E-06 | 2.76E-03 | 25 | 8.74E+03 | 418.31 | 636.00 | 7,76E+02 | 3.10E+02 | #N/A | #N/A | ļ | | 98826 | | 6.50E-02 | 7.83E-06 | 1.47E-02 | 25 | 1.26E+03 | 425.40 | 631.01 | 9.31E+03 | 5,60E+01 | N/A | 4,0E-01 | ├──- | | 79345 | | 7.10E-02 | 7.90E-06 | 3.44E-04 | 25 | 9.00E+03 | 419,60 | 661.15 | 9,33E+01 | 2.97E+03 | #N/A | #N/A | <u> </u> | | 54173 | | 4.14E-02 | 8.85E-06 | 4.70E-03 | 25 | 1.24E+03 | 446.00 | 683.96 | 1.70E+02 | 6,88E+01 | N/A | N/A | | | 10646 | | 6.90E-02 | 7.90E-06 | 2.43E-03 | 25 | 9,27E+03 | 447.21 | 684.75 | 6.17E+02 | 7.38E+01
2.77E+04 | N/A
N/A | 8.0E-01
N/A | \$
\$ | | 9550 | | 6.88E-02 | 9.41E-06 | 1.62E-06 | 25 | 9.70E+03 | 465,00 | 697,50 | 5.34E+01
1.78E+03 | 3.00E+02 | N/A | 2.0E-01 | | | 12082 | | 3.00E-02 | 8.23E-06 | 1.42E-03 | 25 | 1.05E+04
1.24E+03 | 486.15
452.00 | | 3.27E+01 | 6.57E+03 | #N/A | #N/A | 0.0E+00 | | 10052 | | 7.30E-02 | 9.07E-06 | 2.62E-05 | 25 | 1.24E+03 | 514.05 | 761,01 | 8.51E+03 | 2.46E+01 | N/A | 3.0E-03 | S S | | 91576 | | 4.84E-02 | 7.75E-06 | 1.01E-03 | 25 | 1.15E+03 | 529.10 | 793.65 | 6.25E+03 | 6.94E+00 | N/A | N/A | 0.0E+00 | | 92524 | | 4.04E-02 | 8.15E-06 | 3.03E-04 | 25 | | 553.00 | 793.63 | 4.79E+03 | 3.93E+00 | N/A | 3.0E-03 | S S | | 20896 | | 4.43E-02 | 7.44E-06 | 2.80E-04
1,55E-04 | 25
25 | 1.12E+03
1.22E+04 | 550.54 | 803.15 | 7.08E+03 | 4.24E+00 | N/A | 3.0E-03 | s | | 83321
13264 | | 4.21E-02 | 7.69E-06
5.93E-06 |
1,55E-04
4,00E-03 | 25 | 1,11E+03 | 559.00 | 824,01 | 8.13E+03 | 1,00E+01 | N/A | N/A | 8 | | 8673 | | 2.67E-02
3.63E-02 | 7.88E-06 | 9,41E-08 | 25 | 1.27E+04 | 570.44 | 870.00 | 7.71E+03 | 1.90E+00 | N/A | 3.0E-03 | s | | 8501 | | 3.30E-02 | 7.47E-06 | 1.30E-04 | 25 | 1.06E+03 | 613.00 | 869,01 | 1.41E+04 | 1,28E+00 | N/A | 3.0E-03 | Š | | 12012 | | 3.30E-02
3.24E-02 | 7.74E-06 | 6.51E-05 | 25 | 1.31E+04 | 615.18 | 873.00 | 2.95E+04 | 4.34E-02 | N/A | 3.0E-03 | Š | | C5-C | | 6.00E-02 | 1.00E-05 | 1.30E+00 | 25 | NA | NA NA | NA | 2.27E+03 | 1.10E+04 | N/A | 2.0E-01 | - s | | C9-C1: | | 6.00E-02 | 1.00E-05 | 1.56E+00 | 25 | NA NA | NA NA | NA NA | 1.50E+05 | 7.00E+01 | N/A | 2.0E-01 | s | | C9-C1 | | 6.00E-02 | 1.00E-05 | 7.92E-03 | 25 | NA NA | NA NA | NA NA | 1.78E+03 | 5,10E+04 | N/A | 5.0E-02 | s | | C9-C1 | | 6.00E-02 | 1.00E-05 | 1.66E+00 | 25 | NA NA | NA NA | NA NA | 6.80E+05 | 1.00E+01 | N/A | 2.0E-01 | Š | | C11-C2 | | 6.00E-02 | 1.00E-05 | 7.32E-04 | 25 | NA NA | NA NA | NA NA | 5.00E+03 | 5.80E+03 | N/A | 5.0E-02 | | | <u> </u> | 4 CTI-CZZ ATORIZIES | 0.005-02 | 1.00=-05 | 1.32E-04 | 1 40 | 1 1975 | 111/4 | 1, 130 | 1 3.tvc-103 | 1 3.00E.03 | 1.100 | 1 0.05:04 | | Appandix C.4 Johnson & Ettinger Model - Deta Entry Screen Inhalation of Volalifies from Soil Future Adult Recreational Scenario - RME Southweel Prparties, Wells G&H Superfund Site, Operable Unit 2 Writinsiy Barret | Chemical
CAS No. | | Source-
building
separation, | Vadose zone
soli
air-filed
porosity, | Vadose zone
effective
total fluid
saturation, | Vadose zone
eoil
Intrinsic
permeability, | Vadose zone
eoil
relative air
permeability, | Vadose zone
soli
effective vapor
permeability, | Floor-
wali
seam
perimeter, | frittal soil
concentration
used, | Bldg.
ventilation
rate, | Area of
endosed
space
below
grade, | Crack-
to-total
area
ratio, | Creck
depth
below
grade, | Enthalpy of
reportzation a
ave. soil
temperature, | ave. soil | Henry's law
constant at
ave. soil
temperature, | Vapor
viscosity at
eve, soll
temperature, | Vadose
zone
effective
diffusion
coefficient. | |---------------------|--|--|---|--|---|--|---|--------------------------------------|--|-------------------------------|--|--------------------------------------|-----------------------------------|--|----------------------|---|--|--| | (numbers only, | | LT | Θ.Υ | S _{in} | k, | Key | k, | Xorack | CR | Charleton | A _e | η | Z | $\Delta H_{v, rs}$ | H _{TS} | HTS | μ _{τε} | D*** _V | | no dashes) | Chemical | (cm) | (cm³/cm³) | (cm³/cm³) | (cm²) | (cm²) | (cm²) | (cm) | (µg/kg) | (cm³/s) | (cm²) | (unitiess) | (cm) | (cal/mol) | (lom/m-mts) | (unitless) | (g/cm-s) | (cm²/s) | | | | , | | | | | | | | | | | | | 4.98E-03 | 2 13E-01 | 1.75E-04 | 4.77E-04 | | 95836
540590 | Trimethylbenzene, 1,2,4-
Dichloroethylene, 1,2- (total) | | 0.130 | 0.659 | 1 62E-08 | 0.390 | 6.33E-09
6.33E-09 | 1.72E+04
1.72E+04 | 4.36E+05
5.98E+02 | 2.52E+08
2.52E+08 | 9.50E+06
9.50E+06 | | 15 | 1.55E+03
1.73E+03 | 3.87E-04 | 1.87E-02 | 1.758-04 | 3.77E-04 | | 108678 | Trimethylbenzene, 1,3.5- | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 7.13E+04 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1.55E+03 | 8.80E-03 | 2 93E-01 | 1.75E-04 | 3.95E-04 | | 104518 | n-Butylbenzene | 1 | 0.130 | 0.659 | 1 82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 6 63E+03 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1.53E+03 | 1.09E-02 | 4.69E-01 | 1.75E-04 | 4.41E-04 | | 91203 | Naphthalene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.74E+03 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1.29E+04 | 1.52E-04 | 6.55E-03 | 1,75E-04 | 4.70E-04 | | 99876 | Isopropyltoluene, 4- | 1 | 0.130 | 0.559 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 7.31E+08 | 2.52E+08 | 9.50E+06 | | 15 | 1.57E+03 | 7.48E+00 | 3,22E+02 | 1.756-04 | 4.39E-04 | | 135988 | Butylbenzene, sec- | 1 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.10E+06 | 2.52E+08 | 9.50E+06 | | 15 | 1.53E+03 | 1.48E-02 | 6.27E-01 | 1.76E-04 | 4 86E-04 | | 74873 | Chioromethane | 1 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.49E+02 | 2.52E+06 | 9.50E+08 | | 15 | 1.20E+03 | 7.79E-03 | 3.35E-01
7.46E-01 | 1.75E-04
1.75E-04 | 7.66E-04
6.44E-04 | | 75014 | Vinyl chloride | 1 | 0.130 | 0.859 | 1.62E-08 | 0.360 | 6.33E-09 | 1.72E+04 | 2.61E+02
3.69E+06 | 2.52E+08 | 9.50E+08 | | 15
15 | 5.00E+03
5.39E+03 | 1 73E-02
3.84E-03 | 1,65E-01 | 1.75E-04 | 4 48E-04 | | 74839
75003 | Bromomelhane
Elhvi Chloride | 1 1 | 0.130 | 0.659 | 1,62E-08
1,62E-08 | 0.390 | 5,33E-09
6.33E-09 | 1.72E+04
1.72E+04 | 8.60E+01 | 2.52E+08
2.52E+08 | 9.50E+08 | | 15 | 1.20E+03 | 7.78E-03 | 3.35E+01 | 1.75E-04 | 7.66E-04 | | 75354 | 1,1-Dichloroelhylane | | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.20€+02 | 2.52E+08 | 9.50E+08 | | 15 | 6.39E+03 | 1.47E-02 | 6.34E-01 | 1.75E-04 | 5.47E-04 | | 76131 | Trichloro-1,2,2-triflouroethane, 1,1,2- | 1 1 | 0.130 | 0.669 | 1.62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 3.99E+05 | 2.52E+08 | 9.50E+06 | | 15 | 1,44E+03 | 4.55E-01 | 1.96E+01 | 1.75E-04 | 1.75E-04 | | 67841 | Acetone | 1 | 0.130 | 0,659 | 1.62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 3.248+02 | 2.52E+08 | 9.50E+08 | | 15 | 7,58E+03 | 1.97E-05 | 8.50E-04 | 1.75E-04 | 2.07E-03 | | 76160 | Carbon Disulfide | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 8.78E+05 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 6.68E+03 | 0.89E-03 | 3.01E-01 | 1.75E-04 | 6.34E-04 | | 79209 | Methyl Acetate | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 5.03E+07 | 2.52E+08 | 9.50E+08 | | 16 | 1.50E+03 | 9.88E-05 | 4.25E-03 | 1.75E-04 | 8.61E-04 | | 75092 | Methylene chioride | 1 | 0.130 | 0.669 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 7.27E+02 | 2.52E+D8 | 9.50E+08 | | 15 | 7.03E+03 | 1.176-03 | 5.03E-02 | 1.75E-04 | 6.35E-04
4.32E-04 | | 156605 | Irana-1,2-Dichloroethylene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 7.73E+01 | 2.52E+08 | 9.50E+05 | | 15 | 1.42E+03 | 8.27E-03 | 3,56E-01
2,22E-02 | 1.75E-04
1.75E-04 | 6.87E-04 | | 1834044 | Methyl-Tertiary-Bulyl Ether | 1 | 0.130 | 0.659
0.669 | 1.62E-08 | 0.390 | 6.335-09 | 1.72E+04 | 5.75E+01
3.58E+02 | 2.52E+08 | 9.50E+08 | | 15 | 1.45E+03
7.45E+03 | 5.18E-04
2.88E-03 | 1.24E-01 | 1,75E-04 | 4.58E-04 | | 76343
158592 | 1,1-Dichloroethane
cis-1,2-Dichloroethylene | 1-1- | 0.130 | 0.659 | 1.62E-08
1.62E-08 | 0.390 | 6.33E-09
6.33E-09 | 1.72E+04
1.72E+04 | 1.80E+02 | 2 62E+06
2 6ZE+06 | 9.50E+08 | 1.30E-04 | 15 | 7.73E+03 | 2.04E-03 | 8.77E-02 | 1 75E-04 | 4.59E-04 | | 78933 | Butanone, 2- (MEK) | 1 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.63E+07 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1.49E+03 | 4.90E-05 | 2.11E-03 | 1.75E-04 | 9.45E-04 | | 71556 | 1,1,1-Trichioroethane | 1 | 0.130 | 0.558 | 1.62E-08 | 0.390 | 0.336-09 | 1.72E+04 | 6.01E+06 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 7.88E+03 | 8.50E-03 | 3.86E-01 | 1.75E-04 | 4.75E-04 | | 110827 | Cyclohexane | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 3.88E+05 | 2.52E+05 | 9.50€+06 | 1.30E-04 | 15 | 1 49E+03 | 1 75E+00 | 7.64E+01 | 1.75E-04 | 4.85E-04 | | 71432 | Benzena | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 2,10E+02 | 2.52E+06 | 9.50E+05 | | 15 | 8 12E+03 | 2,695-03 | 1.16E-01 | 1.75E-04 | 5.42E-04 | | 79018 | Trichloroethylene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.91E+02 | 2.52E+08 | 9.50E+08 | | 15 | 8.58E+03 | 4.79E-03 | 2.06E-01 | 1.75E-04 | 4.83E-04 | | 108872 | Methyl cyclohexane | 1 | 0.130 | 0.656 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.45E+02 | 2 52E+08 | 9.50E+08 | | 15 | 1.51E+03 | 3.70E-01 | 1,59E+01 | 1.75E-04
1.75E-04 | 5.98E-04
5.34E-04 | | 108883 | Toluene | 1 | 0.130 | 0,659 | 1.62E-08 | 0,390 | 6.33E-09 | 1,72E+04 | 5.85E+02 | 2 52E+08 | 9.50E+08 | 1.30E-04 | 15 | 9.15E+03
9.55E+03 | 2.92E-03
7.83E-03 | 1.26E-01
3.37E-01 | 1.75E-04
1.75E-04 | 4.39E-04 | | 127164
108907 | Tetrachloroethylene | 1 | 0.130 | 0.659
0.659 | 1,62E-08 | 0.390 | 6.33E-09
6.33E-09 | 1.72E+04
1.72E+04 | 1.47E+02
3.11E+02 | 2.52E+06
2.52E+06 | 9.50E+06
9.50E+06 | | 15 | 9.50E+03 | 1 54E-03 | 8.65E-02 | 1.75E-04 | 4.55E-04 | | 100907 | Chlorobenzane
Ethylbenzene | 1 - 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.845+02 | 2.52E+06 | 9.50E+08 | | 15 | 1.02E+04 | 3.18E-03 | 1.37E-01 | 1.75E-04 | 4 80E-04 | | 1330207 | Xvienea | + + | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.50E+05 | 2.52E+08 | 9.50£+08 | | 15 | 1.54E+03 | 6.98E-08 | 2,52E-04 | 1.75E-04 | 3.75E-03 | | 100425 | Styrene | 1 1 | 0.130 | 0.659 | 1.62E-08 | 0.380 | 6.33E-09 | 1,72E+04 | 5 44E+06 | 2.526+08 | 9.50E+00 | | 15 | 1.05E+04 | 1.08E-03 | 4.67E-02 | 1.75E-04 | 4.47E-04 | | 98828 | laopropy/benzene | 1 | 0 130 | 0.659 | 1.62E-08 | 0.390 | 6 33E-09 | 1.72E+04 | 1.08E+08 | 2.52E+08 | | 1.30E-04 | 15 | 1,54E+03 | 1.28E-02 | 5.51E-01 | 1.75E-04 | 3.95E-04 | | 79345 | 1,1,2,2-Telrachioroethane | 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 5.33E-09 | 1,72E+04 |
1.15E+06 | 2.52E+06 | 9.500+06 | | 15 | 1.05E+04 | 1.34E-04 | 5.77E-03 | 1.75E-04 | 5.65E-04 | | 541731 | Dichlorobenzene, 1,3- | 1 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 1.00E+02 | 2.5ZE+08 | 9.506+08 | | 15 | 1.50E+03 | 4.11E-03 | 1,77E-01 | 1.75E-04 | 7.58E-04 | | 108487 | 1,4-Dichlorobenzene | 1 1 | 0,130 | 0.859 | 1.82E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 2.50E+02 | 2.52E+08 | 9.50E+08 | | 15 | 1,12E+04 | 8.89E-04 | 3.83E-02 | 1.75E-04 | 4.38E-04 | | 95501 | 1,2-Dichlorobenzene | 1 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-08 | 1.72E+04 | 5.10E+01 | 2.52E+08 | 9.50E+08 | | 15 | 1.21E+04
1.32E+04 | 5.51E-07
4.35E-04 | 2,37E-05
1,87E-02 | 1.75E-04
1.75E-04 | 3.94E-02
2.25E-04 | | 120821 | 1,2,4-Trichlorobenzene | + | 0.130 | 0.659
0.659 | 1.62E-06
1.62E-08 | 0.390 | 6,33E-08
6,33E-08 | 1.72E+04
1.72E+04 | 1.13E+08
1.74E+08 | 2.52E+06
2.52E+06 | 9.50E+06 | | 15 | 1.53E+03 | 2.29E-05 | 9.84E-04 | 1.75E-04 | 1.35E-03 | | 91576 | Benzaldehyde
Methylnaphthalene, Z- | + | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-08 | 1.72E+04 | 6.41E+03 | 2.52E+06 | 9.50E+06 | | 15 | 1.51E+03 | 8.85E-04 | 3.81E-02 | 1,75E-04 | 3.13E-04 | | 92524 | Biphenyl, 1,1% | + | 0.130 | 0.659 | 1.625-08 | 0.390 | 6,33E-09 | 1.72E+04 | 5.81E+04 | 2.52E+06 | 9.50E+05 | | 15 | 1.47E+03 | 2.86E-04 | 1.14E-02 | 1.75E-04 | 3.15E-04 | | 208968 | Acenaphilitylene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 4.00E+02 | 2.52E+08 | 9.50E+08 | | 15 | 1.616+03 | 2.45E-04 | 1.05E-02 | 1.75E+04 | 3.38E-04 | | 83329 | Acenephthene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 6.09E+04 | 2.52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.81E+04 | 3.67E-05 | 1.58E-03 | 1.76E-04 | 7.33E-04 | | 132649 | Dibenzofuran | 1 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1,72E+04 | 1.79E+03 | 2.526+06 | 9.50E+08 | | 15 | 1.47E+03 | 3.51E-03 | 1.616-01 | 1.76E-04 | 1.66E-04 | | 86737 | Fluorene | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 2.97E+04 | 2.52E+08 | 9.60E+08 | | 15 | 1.82E+04 | 2 205-08 | 9.48E-07 | 1.75E-04 | 6 16E-01 | | 85018 | Phenanthrene | 1 1 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 1.72E+04 | 3.64E+04 | 2,52E+08 | 8.50E+08 | | 15 | 1.48E+03 | 1.145-04 | 4.90E-03
5.43E-04 | 1,75E-04
1,75E-04 | 3 50E-04
1,60E-03 | | 120127 | Anthraceme | 1 1 | 0.130 | 0.669 | 1.62E-08 | 0.390 | 6.33E-09 | 1.77E+04 | 2.57E+03
9.83E+04 | 2.52E+06 | 9.50€+08
9.50€+08 | | 15 | 1.84E+04
NA | 1,26E-06
6,46E-01 | 2.79E+01 | 1.75E-04 | 3.64E-04 | | C5-C8 | CS-CS Aliphetics | | 0.130 | 0.659 | 1.62E-08
1.62E-08 | 0,390 | 6,33E-09
6,33E-09 | 1.72E+04
1.72E+04 | 9.83E+04
8.11E+04 | 2.52E+08
2.52E+08 | 9.50E+08 | | 15 | NA | 7.80E-01 | 3.38E+01 | 1.75E-04 | 3.64E-04 | | C9-C12
C9-C10 | C9-C12 Aliphatics C9-C10 Aromatics | 1 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 0.33E-09 | 1.72E+04 | 4.31E+05 | 2.62E+06 | 9.50E+08 | | 15 | NA NA | 3.98E-03 | 1.70E-01 | 1.75E-04 | 3.69E-04 | | C9-C16 | C9-C18 Alphalics | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 8 33E-09 | 1.72E+04 | 6.04E+06 | 2.62E+06 | 9.50E+06 | | 15 | NA NA | 8.286-01 | 3.56E+01 | 1.75E-04 | 3.64E-04 | | C11-C22 | C11-C22 Aromatics | 1 1 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 8.33E-09 | 1.72E+04 | 4,10E+08 | 2.52E+06 | | 1.30E-04 | 15 | NA NA | 3.60E-04 | 1.55E-02 | 1.75E-04 | 4.27E-04 | | ×11.742 | 10 11-9-E revitation | | | | 11022-00 | 0.040 | , | 117.00 | | | | | | | | | | |